×

Stability analysis of a multigroup SEIR epidemic model with general latency distributions. (English) Zbl 1406.92630

Summary: The global stability of a multigroup SEIR epidemic model with general latency distribution and general incidence rate is investigated. Under the given assumptions, the basic reproduction number \(\operatorname{Re}_0\) is defined and proved as the role of a threshold; that is, the disease-free equilibrium \(P_0\) is globally asymptotically stable if \(\operatorname{Re}_0 \leq 1\), while an endemic equilibrium \(P^*\) exists uniquely and is globally asymptotically stable if \(\operatorname{Re}_0 > 1\). For the proofs, we apply the classical method of Lyapunov functionals and a recently developed graph-theoretic approach.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anderson, R. M.; May, R. M., Population biology of infectious diseases I, Nature, 280, 361-367 (1979)
[2] Gao, S. J.; Teng, Z. D.; Xie, D. H., The effects of pulse vaccination on SEIR model with two time delays, Applied Mathematics and Computation, 201, 1-2, 282-292 (2008) · Zbl 1143.92024
[3] Korobeinikov, A., Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bulletin of Mathematical Biology, 71, 1, 75-83 (2009) · Zbl 1169.92041
[4] Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J., Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, 160, 2, 191-213 (1999) · Zbl 0974.92029
[5] van den Driessche, P.; Wang, L.; Zou, X., Modeling diseases with latency and relapse, Mathematical Biosciences and Engineering, 4, 2, 205-219 (2007) · Zbl 1123.92018
[6] van den Driessche, P.; Zou, X., Modeling relapse in infectious diseases, Mathematical Biosciences, 207, 1, 89-103 (2007) · Zbl 1114.92047
[7] Liu, S.; Wang, S.; Wang, L., Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Analysis. Real World Applications, 12, 1, 119-127 (2011) · Zbl 1208.34125
[8] Guo, H.; Li, M. Y.; Shuai, Z., Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canadian Applied Mathematics Quarterly, 14, 3, 259-284 (2006) · Zbl 1148.34039
[9] Guo, H.; Li, M. Y.; Shuai, Z., A graph-theoretic approach to the method of global Lyapunov functions, Proceedings of the American Mathematical Society, 136, 8, 2793-2802 (2008) · Zbl 1155.34028
[10] Kuniya, T., Global stability of a multi-group SVIR epidemic model, Nonlinear Analysis. Real World Applications, 14, 2, 1135-1143 (2013) · Zbl 1315.34051
[11] Li, M. Y.; Shuai, Z. S.; Wang, C. C., Global stability of multi-group epidemic models with distributed delays, Journal of Mathematical Analysis and Applications, 361, 1, 38-47 (2010) · Zbl 1175.92046
[12] Li, M. Y.; Shuai, Z. S., Global-stability problem for coupled systems of differential equations on networks, Journal of Differential Equations, 248, 1, 1-20 (2010) · Zbl 1190.34063
[13] Sun, R., Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Computers & Mathematics with Applications, 60, 8, 2286-2291 (2010) · Zbl 1205.34066
[14] Sun, R.; Shi, J., Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Applied Mathematics and Computation, 218, 2, 280-286 (2011) · Zbl 1223.92057
[15] Shu, H.; Fan, D.; Wei, J., Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Analysis. Real World Applications, 13, 4, 1581-1592 (2012) · Zbl 1254.92085
[16] Wang, J.; Zu, J.; Liu, X.; Huang, G.; Zhang, J., Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate, Journal of Biological Systems, 20, 3, 235-258 (2012) · Zbl 1279.92083
[17] Wang, J.; Takeuchi, Y.; Liu, S., A multi-group SVEIR epidemic model with distributed delay and vaccination, International Journal of Biomathematics, 5, 3 (2012) · Zbl 1280.34059
[18] Zhang, L.; Pang, J.; Wang, J., Stability analysis of a multigroup epidemic model with general exposed distribution and nonlinear incidence rates, Abstract and Applied Analysis, 2013 (2013) · Zbl 1288.92026
[19] Hattaf, K.; Lashari, A. A.; Louartassi, Y.; Yousfi, N., A delayed SIR epidemic model with general incidence rate, Electronic Journal of Qualitative Theory of Differential Equations, 3, 1-9 (2013) · Zbl 1340.34315
[20] Georgescu, P.; Hsieh, Y.-H.; Zhang, H., A Lyapunov functional for a stage-structured predator-prey model with nonlinear predation rate, Nonlinear Analysis. Real World Applications, 11, 5, 3653-3665 (2010) · Zbl 1206.34065
[21] Wang, X.; Tao, Y. D.; Song, X. Y., Pulse vaccination on SEIR epidemic model with nonlinear incidence rate, Applied Mathematics and Computation, 210, 2, 398-404 (2009) · Zbl 1162.92323
[22] Miller, R. K., Nonlinear Volterra Integral Equations (1971), New York, NY, USA: W. A. Benjamin, New York, NY, USA · Zbl 0448.45004
[23] Hale, J. K.; Verduyn Lunel, S. M., Introduction to Functional-Differential Equations. Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99 (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0787.34002
[24] Hino, Y.; Murakami, S.; Naito, T., Functional-Differential Equations with Infinite Delay. Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473 (1991), Springer · Zbl 0732.34051
[25] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A. J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28, 4, 365-382 (1990) · Zbl 0726.92018
[26] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 29-48 (2002) · Zbl 1015.92036
[27] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences (1979), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0484.15016
[28] Freedman, H. I.; Ruan, S. G.; Tang, M. X., Uniform persistence and flows near a closed positively invariant set, Journal of Dynamics and Differential Equations, 6, 4, 583-600 (1994) · Zbl 0811.34033
[29] Bhatia, N. P.; Szegő, G. P., Dynamical Systems: Stability Theory and Applications (1967), Berlin, Germany: Springer, Berlin, Germany · Zbl 0155.42201
[30] Smith, H. L.; Waltman, P., The Theory of the Chemostat (1995), Cambridge University Press · Zbl 1139.92029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.