He, Qiuli; Tao, Chunyan; Sun, Taixiang; Liu, Xinhe; Su, Dongwei Periodicity of the positive solutions of a fuzzy max-difference equation. (English) Zbl 1474.39029 Abstr. Appl. Anal. 2014, Article ID 760247, 4 p. (2014). Summary: We investigate the periodic nature of the positive solutions of the fuzzy max-difference equation \(x_{n + 1} = \text{max} \left\{A_n / x_{n - m}, x_{n - k}\right\}, n = 0,1, \ldots\), where \(k, m \in \{1,2, \ldots \}\), \(A_n\) is a periodic sequence of fuzzy numbers, and \(x_{- d}, x_{- d + 1}, \ldots, x_0\) are positive fuzzy numbers with \(d = \left\{m, k\right\}\). We show that every positive solution of this equation is eventually periodic with period \(k + 1\). Cited in 5 Documents MSC: 39A23 Periodic solutions of difference equations 34A07 Fuzzy ordinary differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Mishkis, A. D., On some problems of the theory of differential equations with deviating argument, Uspekhi Matematicheskikh Nauk, 32, 2, 173-202 (1977) [2] Popov, E. P., Automatic Regulation and Control (1966 (Russian)), Moscow, Russia: Nauka, Moscow, Russia [3] Stević, S., On a symmetric system of max-type difference equations, Applied Mathematics and Computation, 219, 15, 8407-8412 (2013) · Zbl 1291.39029 · doi:10.1016/j.amc.2013.02.008 [4] Stević, S., On positive solutions of some classes of max-type systems of difference equations, Applied Mathematics and Computation, 232, 445-452 (2014) · Zbl 1410.39017 · doi:10.1016/j.amc.2013.12.126 [5] Stević, S.; Alghamdi, M. A.; Alotaibi, A.; Shahzad, N., Eventual periodicity of some systems of max-type difference equations, Applied Mathematics and Computation, 236, 635-641 (2014) · Zbl 1334.39042 · doi:10.1016/j.amc.2013.12.149 [6] Sun, T.; Qin, B.; Xi, H.; Han, C., Global behavior of the max-type difference equation \(x_{n + 1} = \text{max} \{1 / x_n, A_n / x_{n - 1} \} \), Abstract and Applied Analysis, 2009 (2009) · Zbl 1167.39303 · doi:10.1155/2009/152964 [7] Sun, T.; Xi, H.; Han, C.; Qin, B., Dynamics of the max-type difference equation \(x_n = \text{max} \left``\{1 / x_{n - m}, A_n / x_{n - r}\right``\} \), Journal of Applied Mathematics and Computing, 38, 1-2, 173-180 (2012) · Zbl 1295.39008 · doi:10.1007/s12190-010-0471-y [8] Sun, T.; Xi, H.; Qin, B., Global behavior of the max-type difference equation \(x_{n + 1} = \text{max} \left``\{A / x_{n - m}, 1 / x_{n - k}^\alpha\right``\} \), Journal of Concrete and Applicable Mathematics, 10, 1-2, 32-39 (2012) · Zbl 1261.39016 [9] Elsayed, E. M.; Stević, S., On the max-type equation \(x_{n + 1} = \text{max} \{A / x_n, x_{n - 2} \} \), Nonlinear Analysis: Theory, Methods & Applications A: Theory and Methods, 71, 3-4, 910-922 (2009) · Zbl 1169.39003 · doi:10.1016/j.na.2008.11.016 [10] Iričanin, B. D.; Elsayed, E. M., On the max-type difference equation \(x_{n + 1} = \text{max} \{A / x_n, x_{n - 3} \} \), Discrete Dynamics in Nature and Society, 2010 (2010) · Zbl 1188.39016 · doi:10.1155/2010/675413 [11] Xiao, Q.; Shi, Q.-h., Eventually periodic solutions of a max-type equation, Mathematical and Computer Modelling, 57, 3-4, 992-996 (2013) · Zbl 1305.39007 · doi:10.1016/j.mcm.2012.10.010 [12] Qin, B.; Sun, T.; Xi, H., Dynamics of the max-type difference equation \(x_{n + 1} = \text{max} \{A / x_n, x_{n - k} \} \), Journal of Computational Analysis and Applications, 14, 5, 856-861 (2012) · Zbl 1261.39015 [13] Zhang, Q. H.; Liu, J. Z., The first-order fuzzy difference equation \(x_{n + 1} = A x_n + B\), Fuzzy Systems and Mathematics, 23, 4, 74-79 (2009) · Zbl 1264.39017 [14] Zhang, Q.; Yang, L.; Liao, D., On the fuzzy difference equation \(x_{n + 1} = A + \sum_{i = 0}^k B / x_{n - i}\), World Academy of Science, Engineering and Technology, 75, 1032-1037 (2011) [15] Zhang, Q. H.; Yang, L. H.; Liao, D. X., Behavior of solutions to a fuzzy nonlinear difference equation, Iranian Journal of Fuzzy Systems, 9, 2, 1-12 (2012) · Zbl 1260.39026 [16] Stefanidou, G.; Papaschinopoulos, G., The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation, Information Sciences, 176, 24, 3694-3710 (2006) · Zbl 1122.39008 · doi:10.1016/j.ins.2006.02.006 [17] Zhang, Q.; Yang, L.; Liao, D., On first order fuzzy Ricatti difference equation, Information Sciences, 270, 226-236 (2014) · Zbl 1341.39001 · doi:10.1016/j.ins.2014.02.086 [18] Papaschinopoulos, G.; Papadopoulos, B. K., On the fuzzy difference equation \(x_{n + 1} = A + x_n / x_{n - m}\), Fuzzy Sets and Systems, 129, 1, 73-81 (2002) · Zbl 1016.39015 · doi:10.1016/S0165-0114(01)00198-1 [19] Nguyen, H. T.; Walker, E. A., A First Course in Fuzzy Logic (1997), Boca Raton, Fla, USA: CRC Press, Boca Raton, Fla, USA · Zbl 0856.03019 [20] Wu, C.; Zhang, B., Embedding problem of noncompact fuzzy number space \(E^-(I)\), Fuzzy Sets and Systems, 105, 1, 165-169 (1999) · Zbl 0939.46044 · doi:10.1016/S0165-0114(97)00218-2 [21] Klir, G. J.; Yuan, B., Fuzzy Sets and Fuzzy Logic (1995), Upper Saddle River, NJ, USA: Prentice Hall PTR, Upper Saddle River, NJ, USA · Zbl 0915.03001 [22] Papaschinopoulos, G.; Papadopoulos, B. K., On the fuzzy difference equation \(x_{n + 1} = A + B / x_n\), Soft Computing, 6, 456-461 (2002) · Zbl 1033.39014 [23] Stefanidou, G.; Papaschinopoulos, G., Behavior of the positive solutions of fuzzy max-difference equations, Advances in Difference Equations, 2, 153-172 (2005) · Zbl 1109.39012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.