## Numerical solution for elliptic interface problems using spectral element collocation method.(English)Zbl 1474.65458

Summary: The aim of this paper is to solve an elliptic interface problem with a discontinuous coefficient and a singular source term by the spectral collocation method. First, we develop an algorithm for the elliptic interface problem defined in a rectangular domain with a line interface. By using the Gordon-Hall transformation, we generalize it to a domain with a curve boundary and a curve interface. The spectral element collocation method is then employed to complex geometries; that is, we decompose the domain into some nonoverlaping subdomains and the spectral collocation solution is sought in each subdomain. We give some numerical experiments to show efficiency of our algorithm and its spectral convergence.

### MSC:

 65N35 Spectral, collocation and related methods for boundary value problems involving PDEs 35J25 Boundary value problems for second-order elliptic equations
Full Text:

### References:

 [1] Ewing, R. E., Problems arising in the modeling of processes for hydrocarbon recovery, The Mathematics of Reservoir Simulation, 3-34 (1983), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0538.76099 [2] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik, 96, 1, 61-98 (2003) · Zbl 1055.65130 · doi:10.1007/s00211-003-0473-x [3] Nielsen, B. F., Finite element discretizations of elliptic problems in the presence of arbitrarily small ellipticity: an error analysis, SIAM Journal on Numerical Analysis, 36, 2, 368-392 (1999) · Zbl 0921.76104 · doi:10.1137/S0036142997319431 [4] Peaceman, D. W., Fundamentals of Numerical Reservoir Simulation (1977), Elsevier [5] Reddy, J. N., Finite Element Method (1993), New York, NY, USA: McGraw-Hill, New York, NY, USA [6] LeVeque, R. J.; Li, Z. L., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis, 31, 4, 1019-1044 (1994) · Zbl 0811.65083 · doi:10.1137/0731054 [7] Li, Z., The immersed interface method using a finite element formulation, Applied Numerical Mathematics, 27, 3, 253-267 (1998) · Zbl 0936.65091 · doi:10.1016/S0168-9274(98)00015-4 [8] Shin, B.-C.; Jung, J.-H., Spectral collocation and radial basis function methods for one-dimensional interface problems, Applied Numerical Mathematics, 61, 8, 911-928 (2011) · Zbl 1219.65066 · doi:10.1016/j.apnum.2011.03.005 [9] Loubenets, A.; Ali, T.; Hanke, M., Highly accurate finite element method for one-dimensional elliptic interface problems, Applied Numerical Mathematics, 59, 1, 119-134 (2009) · Zbl 1181.65109 · doi:10.1016/j.apnum.2007.12.003 [10] Huang, H.; Li, Z., Convergence analysis of the immersed interface method, IMA Journal of Numerical Analysis, 19, 4, 583-608 (1999) · Zbl 0940.65114 · doi:10.1093/imanum/19.4.583 [11] Li, Z.; Ito, K., Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM Journal on Scientific Computing, 23, 1, 339-361 (2001) · Zbl 1001.65115 · doi:10.1137/S1064827500370160 [12] Angelova, I. T.; Vulkov, L. G., High-order finite difference schemes for elliptic problems with intersecting interfaces, Applied Mathematics and Computation, 187, 2, 824-843 (2007) · Zbl 1120.65331 · doi:10.1016/j.amc.2006.08.165 [13] Li, Z.; Lin, T.; Wu, X., New cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik, 96, 1, 61-98 (2003) · Zbl 1055.65130 · doi:10.1007/s00211-003-0473-x [14] Hanke, M.; Loubenets, A., An immersed finite element method and its convergence for elliptic interface problems with discontinuous coefficients and singular sources [15] Kwak, D. Y.; Wee, K. T.; Chang, K. S., An analysis of a broken $$P_1$$-nonconforming finite element method for interface problems, SIAM Journal on Numerical Analysis, 48, 6, 2117-2134 (2010) · Zbl 1222.65125 · doi:10.1137/080728056 [16] Latige, M.; Colin, T.; Gallice, G., A second order Cartesian finite volume method for elliptic interface and embedded Dirichlet problems, Computers and Fluids, 83, 70-76 (2013) · Zbl 1290.65100 · doi:10.1016/j.compfluid.2012.06.027 [17] Seftel, Z. G., A general theory of boundary value problems for elliptic systems with discontinuous coefficients, Ukrainian Mathematical Journal, 18, 3, 132-136 (1966) [18] Gordon, W. J.; Hall, C. A., Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numerische Mathematik, 21, 2, 109-129 (1973) · Zbl 0254.65072 · doi:10.1007/BF01436298 [19] Gordon, W. J.; Hall, C. A., Construction of curvilinear co-ordinate systems and applications to mesh generation, International Journal for Numerical Methods in Engineering, 7, 4, 461-477 (1973) · Zbl 0271.65062 · doi:10.1002/nme.1620070405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.