×

Ultimate bound of a 3D chaotic system and its application in chaos synchronization. (English) Zbl 1406.93137

Summary: Two ellipsoidal ultimate boundary regions of a special three-dimensional (3D) chaotic system are proposed. To this chaotic system, the linear coefficient of the \(i\)th state variable in the \(i\)th state equation has the same sign; it also has two one-order terms and one quadratic cross-product term in each equation. A numerical solution and an analytical expression of the ultimate bounds are received. To get the analytical expression of the ultimate boundary region, a new result of one maximum optimization question is proved. The corresponding ultimate boundary regions are demonstrated through numerical simulations. Utilizing the bounds obtained, a linear controller is proposed to achieve the complete chaos synchronization. Numerical simulation exhibits the feasibility of the designed scheme.

MSC:

93C05 Linear systems in control theory
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Shu, Y.; Xu, H.; Zhao, Y., Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization, Chaos, Solitons and Fractals, 42, 5, 2852-2857 (2009) · Zbl 1198.93152 · doi:10.1016/j.chaos.2009.04.003
[2] Zhang, F.; Shu, Y.; Yang, H., Bounds for a new chaotic system and its application in chaos synchronization, Communications in Nonlinear Science and Numerical Simulation, 16, 3, 1501-1508 (2011) · Zbl 1221.34122 · doi:10.1016/j.cnsns.2010.05.032
[3] Li, Y.; Zhao, Y.; Yao, Z. A., Chaotic control and generalized synchronization for a hyperchaotic Lorenz-Stenflo system, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.34105 · doi:10.1155/2013/515106
[4] Lorenz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130-141 (1963) · Zbl 1417.37129
[5] Leonov, G. A.; Reitmann, V., Attraktoreingrenzung fur Nichtlineare System (1987), Leipzing , Germany: Tenbner, Leipzing , Germany · Zbl 0666.58028
[6] Leonov, G. A.; Bunin, A. L.; Koksch, N., Attraktor localization of the Lorenz system, Zeitschrift für angewandte Mathematik und Mechanik, 67, 649-656 (1987) · Zbl 0653.34040
[7] Pogromsky, A. Y.; Santoboni, G.; Nijmeijer, H., An ultimate bound on the trajectories of the Lorenz system and its applications, Nonlinearity, 16, 5, 1597-1605 (2003) · Zbl 1050.34078 · doi:10.1088/0951-7715/16/5/303
[8] Li, D.; Lu, J.; Wu, X.; Chen, G., Estimating the bounds for the Lorenz family of chaotic systems, Chaos, Solitons and Fractals, 23, 2, 529-534 (2005) · Zbl 1061.93506 · doi:10.1016/j.chaos.2004.05.021
[9] Liao, X.; Fu, Y.; Xie, S., On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization, Science in China F: Information Sciences, 48, 3, 304-321 (2005) · Zbl 1187.37047 · doi:10.1360/04yf0087
[10] Li, D.; Lu, J.; Wu, X.; Chen, G., Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, Journal of Mathematical Analysis and Applications, 323, 2, 844-853 (2006) · Zbl 1104.37024 · doi:10.1016/j.jmaa.2005.11.008
[11] Liao, X.; Fu, Y.; Xie, S.; Yu, P., Globally exponentially attractive sets of the family of Lorenz systems, Science in China F: Information Sciences, 51, 3, 283-292 (2008) · Zbl 1148.37025 · doi:10.1007/s11432-008-0024-2
[12] Suzuki, M.; Sakamoto, N.; Yasukochi, T., A butterfly-shaped localization set for the Lorenz attractor, Physics Letters A, 372, 15, 2614-2617 (2008) · Zbl 1220.37013 · doi:10.1016/j.physleta.2007.11.067
[13] Yu, P.; Liao, X., Globally attractive and positive invariant set of the Lorenz system, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16, 3, 757-764 (2006) · Zbl 1141.37335 · doi:10.1142/S0218127406015143
[14] Yu, P.; Liao, X., New estimations for globally attractive and positive invariant set of the family of the Lorenz systems, International Journal of Bifurcation and Chaos, 16, 11, 3383-3390 (2006) · Zbl 1116.37026 · doi:10.1142/S0218127406016860
[15] Leonov, G. A., Bound for attractors and the existance of homoclinic orbits in the Lorenz system, Journal of Applied Mathematics and Mechanics, 65, 1, 19-32 (2001) · Zbl 1025.34048
[16] LÜ, J.; Chen, G.; Cheng, D., Bridge the gap between the Lorenz system and the Chen system, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 12, 12, 2917-2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X
[17] Chen, G.; Ueta, T., Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9, 7, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[18] Lü, J.; Chen, G., A new chaotic attractor coined, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 12, 3, 659-661 (2002) · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[19] Qi, G.; Chen, G.; Du, S.; Chen, Z.; Yuan, Z., Analysis of a new chaotic system, Physica A, 352, 2-4, 295-308 (2005) · doi:10.1016/j.physa.2004.12.040
[20] Qin, W.-X.; Chen, G., On the boundedness of solutions of the Chen system, Journal of Mathematical Analysis and Applications, 329, 1, 445-451 (2007) · Zbl 1108.37030 · doi:10.1016/j.jmaa.2006.06.091
[21] Zhang, F.; Mu, C.; Li, X., On the boundness of some solutions of the Lü system, International Journal of Bifurcation and Chaos, 22, 1 (2012) · Zbl 1270.34066 · doi:10.1142/S0218127412500150
[22] Xu, H.; Shu, Y.; Yuan, G., The ultimate bound of a chaotic system and its application in chaos synchronization, Journal of Chongqing Technology and Business University, 25, 6, 564-568 (2008)
[23] Mu, C.; Zhang, F.; Shu, Y.; Zhou, S., On the boundedness of solutions to the Lorenz-like family of chaotic systems, Nonlinear Dynamics, 67, 2, 987-996 (2012) · Zbl 1245.34055 · doi:10.1007/s11071-011-0041-3
[24] Yu, P.; Liao, X. X., On the study of globally exponentially attractive set of a general chaotic system, Communications in Nonlinear Science and Numerical Simulation, 13, 8, 1495-1507 (2008) · Zbl 1221.37072 · doi:10.1016/j.cnsns.2006.11.003
[25] Xu, F.; Yu, P.; Liao, X., Global analysis on \(n\)-scroll chaotic attractors of modified Chua’s circuit, International Journal of Bifurcation and Chaos, 19, 1, 135-137 (2009) · Zbl 1170.34322 · doi:10.1142/S0218127409022798
[26] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Localization of hidden Chua’s attractors, Physics Letters A, 375, 23, 2230-2233 (2011) · Zbl 1242.34102 · doi:10.1016/j.physleta.2011.04.037
[27] Li, D.; Wu, X.; Lu, J., Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system, Chaos, Solitons and Fractals, 39, 3, 1290-1296 (2009) · Zbl 1197.37034 · doi:10.1016/j.chaos.2007.06.038
[28] Wang, P.; Li, D.; Hu, Q., Bounds of the hyper-chaotic Lorenz-Stenflo system, Communications in Nonlinear Science and Numerical Simulation, 15, 9, 2514-2520 (2010) · Zbl 1222.37036 · doi:10.1016/j.cnsns.2009.09.015
[29] Zhang, J.; Tang, W., A novel bounded 4D chaotic system, Nonlinear Dynamics, 67, 4, 2455-2465 (2012) · Zbl 1245.34056 · doi:10.1007/s11071-011-0159-3
[30] Wang, P.; Li, D.; Wu, X.; Lü, J., Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 21, 9, 2679-2694 (2011) · Zbl 1248.34084 · doi:10.1142/S0218127411030027
[31] Tang, L. R.; Fan, B.; Kang, Z. M., A chaos synchronization method based on amplitude, Acta Physica Sinica, 61, 8 (2012) · doi:10.7498/aps.61.080508
[32] Lü, J.; Chen, G.; Cheng, D., A new chaotic system and beyond: the generalized Lorenz-like system, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14, 5, 1507-1537 (2004) · Zbl 1129.37323 · doi:10.1142/S021812740401014X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.