Lan, Shuang-Ting; Chen, Zong-Xuan Zeros, poles, and fixed points of meromorphic solutions of difference Painlevé equations. (English) Zbl 1474.39012 Abstr. Appl. Anal. 2014, Article ID 782024, 8 p. (2014). Summary: In this paper, we mainly study the properties of transcendental meromorphic solutions \(f(z)\) of difference Painlevé equations \(w(z + 1) w(z - 1)(w(z) - 1) = \eta(z) w^2(z) - \lambda(z) w(z)\) and \(w(z + 1) w(z - 1)(w(z) -\)\(1) = \eta(z) w(z)\) and obtain precise estimations of the exponents of convergence of zeros, poles of \(\Delta f(z)\) and \(\Delta f(z) / f(z)\), and of fixed points of \(f(z + c)\) for any \(c \in \mathbb C\). MSC: 39A12 Discrete version of topics in analysis 30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory 34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies PDF BibTeX XML Cite \textit{S.-T. Lan} and \textit{Z.-X. Chen}, Abstr. Appl. Anal. 2014, Article ID 782024, 8 p. (2014; Zbl 1474.39012) Full Text: DOI References: [1] Fuchs, L., Sur quelques équations différentielles linéares du second ordre, Comptes Rendus de l’Académie des Sciences, 141, 555-558 (1905) · JFM 36.0397.02 [2] Gambier, B., Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes, Acta Mathematica, 33, 1, 1-55 (1910) · JFM 40.0377.02 [3] Painlevé, P., Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bulletin de la Société Mathématique de France, 28, 201-261 (1900) · JFM 31.0337.03 [4] Painlevé, P., Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Mathematica, 25, 1, 1-85 (1902) · JFM 32.0340.01 [5] Ablowitz, M. J.; Halburd, R.; Herbst, B., On the extension of the Painlevé property to difference equations, Nonlinearity, 13, 3, 889-905 (2000) · Zbl 0956.39003 [6] Hayman, W. K., Meromorphic Functions (1964), Oxford, UK: Clarendon Press, Oxford, UK [7] Yang, L., Value Distribution Theory and Its New Research (1982), Beijing, China: Science Press, Beijing, China [8] Halburd, R. G.; Korhonen, R. J., Existence of finite-order meromorphic solutions as a detector of integrability in difference equations, Physica D: Nonlinear Phenomena, 218, 2, 191-203 (2006) · Zbl 1105.39019 [9] Chen, Z.-X.; Shon, K. H., Value distribution of meromorphic solutions of certain difference Painlevé equations, Journal of Mathematical Analysis and Applications, 364, 2, 556-566 (2010) · Zbl 1183.30026 [10] Ronkainen, O., Meromorphic solutions of difference Painlevé equations, Annales Academiae Scientiarum Fennicae, 155, 59 (2010) · Zbl 1219.39001 [11] Zhang, J. L.; Yang, L. Z., Meromorphic solutions of Painlevé III difference equations, Acta Mathematica Sinica, 57, 1, 181-188 (2014) · Zbl 1313.30137 [12] Lan, S.-T.; Chen, Z.-X., On properties of meromorphic solutions of certain difference painlevé III equations, Abstract and Applied Analysis, 2014 (2014) · Zbl 1472.39031 [13] Chiang, Y.-M.; Feng, S.-J., On the Nevanlinna characteristic of \(f(z + \eta)\) and difference equations in the complex plane, Ramanujan Journal, 16, 1, 105-129 (2008) · Zbl 1152.30024 [14] Halburd, R. G.; Korhonen, R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, Journal of Mathematical Analysis and Applications, 314, 2, 477-487 (2006) · Zbl 1085.30026 [15] Laine, I.; Yang, C.-C., Clunie theorems for difference and \(q\)-difference polynomials, Journal of the London Mathematical Society, 76, 3, 556-566 (2007) · Zbl 1132.30013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.