Qiu, Dong; Lu, Chongxia On properties of pseudointegrals based on pseudoaddition decomposable measures. (English) Zbl 1474.28033 Abstr. Appl. Anal. 2014, Article ID 782040, 12 p. (2014). Summary: We mainly discussed pseudointegrals based on a pseudoaddition decomposable measure. Particularly, we give the definition of the pseudointegral for a measurable function based on a strict pseudoaddition decomposable measure by generalizing the definition of the pseudointegral of a bounded measurable function. Furthermore, we got several important properties of the pseudointegral of a measurable function based on a strict pseudoaddition decomposable measure. Cited in 1 Document MSC: 28E10 Fuzzy measure theory 28A25 Integration with respect to measures and other set functions PDF BibTeX XML Cite \textit{D. Qiu} and \textit{C. Lu}, Abstr. Appl. Anal. 2014, Article ID 782040, 12 p. (2014; Zbl 1474.28033) Full Text: DOI References: [1] Halmos, P. R.; Moore, C. C., Measure Theory (1970), New York, NY, USA: Springer, New York, NY, USA [2] Royden, H. L., Real Analysis (1988), New York, NY, USA: Macmillan, New York, NY, USA · Zbl 0704.26006 [3] Wang, Z. Y.; Klir, G. J., Fuzzy Measure Theory (1992), New York, NY, USA: Plenum Press, New York, NY, USA [4] Wang, Z.; Klir, G. J., Generalized Measure Theory (2009), Boston, Mass, USA: Springer, Boston, Mass, USA · Zbl 1184.28002 [5] Agahi, H.; Yaghoobi, M. A., A Minkowski type inequlity for fuzzy integrals, Journal of Uncertain Systems, 4, 3, 187-194 (2010) [6] Kaluszka, M.; Okolewski, A.; Boczek, M., On Chebyshev type inequalities for generalized Sugeno integrals, Fuzzy Sets and Systems, 244, 51-62 (2014) · Zbl 1315.28013 [7] Mesiar, R.; Ouyang, Y., General Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets and Systems, 160, 1, 58-64 (2009) · Zbl 1183.28035 [8] Ouyang, Y.; Fang, J., Sugeno integral of monotone functions based on Lebesgue measure, Computers & Mathematics with Applications, 56, 2, 367-374 (2008) · Zbl 1155.28305 [9] Wang, R. S., Some inequalities and convergence theorems for Choquet integrals, Journal of Applied Mathematics and Computing, 35, 1-2, 305-321 (2011) · Zbl 1210.28028 [10] Wu, L.; Sun, J.; Ye, X.; Zhu, L., Hölder type inequality for Sugeno integral, Fuzzy Sets and Systems, 161, 17, 2237-2347 (2010) · Zbl 1194.28019 [11] Dubois, D.; Prade, H., A class of fuzzy measures based on triangular norms. A general framework for the combination of uncertain information, International Journal of General Systems, 8, 1, 43-61 (1982) · Zbl 0473.94023 [12] Weber, S., \( \bot \)-decomposable measures and integrals for Archimedean \(t\)-conorms \(\bot \), Journal of Mathematical Analysis and Applications, 101, 1, 114-138 (1984) · Zbl 0614.28019 [13] Denneberg, D., Non-Additive Measure and Integral (1994), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0826.28002 [14] Pap, E., An integral generated by a decomposable measure, Zbornik Radova Prirodno-Matematichkog Fakulteta, 20, 1, 135-144 (1990) · Zbl 0754.28002 [15] Qiu, D.; Zhang, W.; Li, C., On decomposable measures constructed by using stationary fuzzy pseudo-ultrametrics, International Journal of General Systems, 42, 4, 395-404 (2013) · Zbl 1280.28018 [16] Qiu, D.; Zhang, W. Q.; Li, C., Extension of a class of decomposable measures using fuzzy pseudometrics, Fuzzy Sets and Systems, 222, 33-44 (2013) · Zbl 1284.28017 [17] Qiu, D.; Zhang, W., On decomposable measures induced by metrics, Journal of Applied Mathematics, 2012 (2012) · Zbl 1252.28001 [18] Shen, Y. H., On the probabilistic Hausdorff distance and a class of probabilistic decomposable measures, Information Sciences, 263, 126-140 (2014) · Zbl 1331.28035 [19] Gilboa, I., Additivizations of nonadditive measures, Mathematics of Operations Research, 14, 1, 1-17 (1989) · Zbl 0672.90110 [20] Schweizer, B.; Sklar, A., Probabilistic Metric Spaces (1983), Amsterdam, Netherlands: North-Holland, Amsterdam, Netherlands · Zbl 0546.60010 [21] Pap, E., Decomposable measures and nonlinear equations, Fuzzy Sets and Systems, 92, 2, 205-221 (1997) · Zbl 0934.28015 [22] Pap, E., Applications of the generated pseudo-analysis to nonlinear partial differential equations, Contemporary Mathematics, 377, 239-259 (2005) · Zbl 1084.35004 [23] Pap, E., Pseudo-analysis approach to nonlinear partial differential equations, Acta Polytechnica Hungarica, 5, 1, 31-45 (2008) [24] Vivona, D.; Štajner-Papuga, I., Pseudo-linear superposition principle for the Monge-Ampère equation based on generated pseudo-operations, Journal of Mathematical Analysis and Applications, 341, 2, 1427-1437 (2008) · Zbl 1137.35339 [25] Bakry, M. S.; Abu-Donia, H. M., Fixed-point theorems for a probabilistic 2-metric spaces, Journal of King Saud University-Science, 22, 4, 217-221 (2010) [26] Ćirić, L., Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 72, 3-4, 2009-2018 (2010) · Zbl 1194.47093 [27] Cintula, P.; Hájek, P., Triangular norm based predicate fuzzy logics, Fuzzy Sets and Systems, 161, 3, 311-346 (2010) · Zbl 1200.03020 [28] Lin, K.; Wu, M.; Hung, K.; Kuo, Y., Developing a \(T_ω\) (the weakest t-norm) fuzzy GERT for evaluating uncertain process reliability in semiconductor manufacturing, Applied Soft Computing Journal, 11, 8, 5165-5180 (2011) [29] Pap, E., Applications of decomposable measures on nonlinear difference equations, Novi Sad Journal of Mathematics, 31, 2, 89-98 (2001) · Zbl 1014.28002 [30] Pap, E., \(g\)-Calculus, Univerzitet U Novom Sadu, Zbornik Radova Prirodno-Matematičkog Fakulteta: Serija za Matematiku, 23, 145-156 (1993) [31] Pap, E., Null-Additive Set Functions (1995), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0856.28001 [32] Pap, E., Pseudo-analysis as a mathematical base for soft computing, Soft Computing, 1, 2, 61-68 (1997) [33] Sugeno, M.; Murofushi, T., Pseudo-additive measures and integrals, Journal of Mathematical Analysis and Applications, 122, 1, 197-222 (1987) · Zbl 0611.28010 [34] Qiu, D.; Lu, C., On nonlinear functional spaces based on pseudo-additions [35] Mesiar, R.; Pap, E., Idempotent integral as limit of \(g\)-integrals, Fuzzy Sets and Systems, 102, 3, 385-392 (1999) · Zbl 0953.28010 [36] Pap, E.; Štrboja, M.; Rudas, I., Pseudo-\(L^p\) space and convergence, Fuzzy Sets and Systems. An International Journal in Information Science and Engineering, 238, 113-128 (2014) · Zbl 1315.28014 [37] Agahi, H.; Ouyang, Y.; Mesiar, R.; Pap, E.; Štrboja, M., General Chebyshev type inequalities for universal integral, Information Sciences, 187, 171-178 (2012) · Zbl 1250.28013 [38] Qiu, D.; Lu, C., On measurable functional spaces based on pseudo-addition decomposable measures · Zbl 1474.28032 [39] Pap, E.; Ralević, N., Pseudo-Laplace transform, Nonlinear Analysis, 33, 5, 533-550 (1998) · Zbl 0931.44001 [40] Pap, E.; Pap, E., Pseudo-additive measures and their aplications, Handbook of Measure Theory, 1403-1465 (2002), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands · Zbl 1018.28010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.