×

An approach to the concept of soft fuzzy proximity. (English) Zbl 1474.54036

Summary: The purpose of this paper is to introduce the concept of soft fuzzy proximity. Firstly, we give the definitions of soft fuzzy proximity and Katsaras soft fuzzy proximity, and also we investigate the relations between the soft fuzzy proximity and slightly modified version of Katsaras soft fuzzy proximity. Secondly, we induce a soft fuzzy topology from a given soft fuzzy proximity by using soft fuzzy closure operator. Then, we obtain the initial soft fuzzy proximity from a given family of soft fuzzy proximities. So, we describe products in the category of soft fuzzy proximities. Finally, we show that a family of all soft fuzzy proximities on a given set constitutes a complete lattice.

MSC:

54A40 Fuzzy topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Molodtsov, D., Soft set theory—first results, Computers & Mathematics with Applications, 37, 4-5, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[2] Maji, P. K.; Biswas, R.; Roy, A. R., Fuzzy soft sets, Journal of Fuzzy Mathematics, 9, 3, 589-602 (2001) · Zbl 0995.03040
[3] Aktaş, H.; Çağman, N., Soft sets and soft groups, Information Sciences, 177, 13, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[4] Aygünoğlu, A.; Aygün, H., Introduction to fuzzy soft groups, Computers & Mathematics with Applications, 58, 6, 1279-1286 (2009) · Zbl 1189.20068 · doi:10.1016/j.camwa.2009.07.047
[5] Feng, F.; Jun, Y. B.; Zhao, X., Soft semirings, Computers & Mathematics with Applications, 56, 10, 2621-2628 (2008) · Zbl 1165.16307 · doi:10.1016/j.camwa.2008.05.011
[6] Jun, Y. B., Soft BCK/BCI-algebras, Computers & Mathematics with Applications, 56, 5, 1408-1413 (2008) · Zbl 1155.06301 · doi:10.1016/j.camwa.2008.02.035
[7] Jun, Y. B.; Park, C. H., Applications of soft sets in ideal theory of BCK/BCI-algebras, Information Sciences, 178, 11, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[8] Jun, Y. B.; Lee, K. J.; Park, C. H., Soft set theory applied to ideals in \(d\)-algebras, Computers & Mathematics with Applications, 57, 3, 367-378 (2009) · Zbl 1165.03339 · doi:10.1016/j.camwa.2008.11.002
[9] Jun, Y. B.; Lee, K. J.; Zhan, J., Soft \(p\)-ideals of soft BCI-algebras, Computers & Mathematics with Applications, 58, 10, 2060-2068 (2009) · Zbl 1189.06012 · doi:10.1016/j.camwa.2009.07.072
[10] Sun, Q. M.; Zhang, Z. L.; Liu, J.; Wang, G.; Li, T.; Grzymala-Busse, J. W.; Miao, D.; Skowron, A.; Yao, Y., Soft sets and soft modules, Proceedings of the 3rd International Conference on Rough Sets and Knowledge Technology (RSKT ’08), Springer · Zbl 1234.16036
[11] Šostak, A. P., On a fuzzy topological structure, Rendiconti del Circolo Matematico di Palermo II, 11, 89-103 (1985) · Zbl 0638.54007
[12] Aygünoğlu, A.; Çetkin, V.; Aygün, H., An Introduction to fuzzy soft topological spaces · Zbl 1391.54008
[13] Katsaras, A. K., Fuzzy proximity spaces, Journal of Mathematical Analysis and Applications, 68, 1, 100-110 (1979) · Zbl 0412.54006 · doi:10.1016/0022-247X(79)90102-1
[14] Katsaras, A. K., On fuzzy proximity spaces, Journal of Mathematical Analysis and Applications, 75, 2, 571-583 (1980) · Zbl 0443.54006 · doi:10.1016/0022-247X(80)90102-X
[15] Artico, G.; Moresco, R., Fuzzy proximities and totally bounded fuzzy uniformities, Journal of Mathematical Analysis and Applications, 99, 2, 320-337 (1984) · Zbl 0558.54002 · doi:10.1016/0022-247X(84)90221-X
[16] Artico, G.; Moresco, R., Fuzzy proximities compatible with Lowen fuzzy uniformities, Fuzzy Sets and Systems, 21, 1, 85-98 (1987) · Zbl 0612.54006 · doi:10.1016/0165-0114(87)90154-0
[17] Markin, S. A.; Šostak, A. P., Another approach to the concept of a fuzzy proximity, Rendiconti del Circolo Matematico di Palermo II, 29, 529-551 (1992) · Zbl 0789.54004
[18] Kim, Y. C.; Min, K. C., \(L\)-fuzzy preproximities and \(L\)-fuzzy topologies, Information Sciences, 173, 1-3, 93-113 (2005) · Zbl 1076.54507 · doi:10.1016/j.ins.2004.07.005
[19] Zahran, A. M.; Abd-Allah, M. A.; El-Saady, K.; Abd El-Nasser; Abd El-Rahman, G., Double fuzzy preproximity spaces, International Journal of Fuzzy Logic and Intelligent Systems, 7, 249-255 (2007)
[20] Çetkin, V.; Aygün, H., Lattice valued double fuzzy preproximity spaces, Computers & Mathematics with Applications, 60, 3, 849-864 (2010) · Zbl 1201.54010 · doi:10.1016/j.camwa.2010.05.032
[21] Roy, A. R.; Maji, P. K., A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics, 203, 412-418 (2007) · Zbl 1128.90536
[22] Ahmad, B.; Kharal, A., On fuzzy soft sets, Advances in Fuzzy Systems, 2009 (2009) · Zbl 1211.03067 · doi:10.1155/2009/586507
[23] Kharal, A.; Ahmad, B., Mappings on fuzzy soft classes, Advances in Fuzzy Systems, 2009 (2009) · Zbl 1211.54013 · doi:10.1155/2009/407890
[24] Klir, G. J.; Yuan, B., Fuzzy Sets and Fuzzy Logic Theory and Applications (1995), Upper Saddle River, NJ, USA: Prentice Hall PTR, Upper Saddle River, NJ, USA · Zbl 0915.03001
[25] Çetkin, V.; Aygün, H., On soft fuzzy closure and interior operators · Zbl 1391.54008
[26] Šostak, A., On some modifications of fuzzy topology, Matematički Vesnik, 41, 1, 51-64 (1989) · Zbl 0705.54007
[27] Tanay, B.; Kandemir, M. B., Topological structure of fuzzy soft sets, Computers & Mathematics with Applications, 61, 10, 2952-2957 (2011) · Zbl 1222.54009 · doi:10.1016/j.camwa.2011.03.056
[28] Çetkin, V.; Aygün, H., On fuzzy soft topogenous structure, Journal of Intelligent and Fuzzy Systems (2013) · Zbl 1305.54011 · doi:10.3233/IFS-130993
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.