×

On ground states of discrete \(p(k)\)-Laplacian systems in generalized Orlicz sequence spaces. (English) Zbl 1473.46081

Summary: Using the critical point theory, we establish sufficient conditions on the existence of ground states for discrete \(p(k)\)-Laplacian systems. Our results considerably generalize some existing ones.

MSC:

46N20 Applications of functional analysis to differential and integral equations
39A12 Discrete version of topics in analysis

References:

[1] Bartsch, T.; Liu, Z., On a superlinear elliptic \(p\)-Laplacian equation, Journal of Differential Equations, 198, 1, 149-175 (2004) · Zbl 1087.35034 · doi:10.1016/j.jde.2003.08.001
[2] Liu, S., On ground states of superlinear \(p\)-Laplacian equations in \(\mathbf{R}^N\), Journal of Mathematical Analysis and Applications, 361, 1, 48-58 (2010) · Zbl 1178.35174 · doi:10.1016/j.jmaa.2009.09.016
[3] Wong, J. S. W., On the generalized Emden-Fowler equation, SIAM Review, 17, 339-360 (1975) · Zbl 0295.34026 · doi:10.1137/1017036
[4] Fan, X.; Han, X., Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(R^N\), Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal A: Theory and Methods, 59, 1-2, 173-188 (2004) · Zbl 1134.35333 · doi:10.1016/j.na.2004.07.009
[5] Fan, X.-L.; Zhang, Q.-H., Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal A: Theory and Methods, 52, 8, 1843-1852 (2003) · Zbl 1146.35353 · doi:10.1016/S0362-546X(02)00150-5
[6] Fan, X.; Zhao, D., On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m, p(x)}(\Omega)\), Journal of Mathematical Analysis and Applications, 263, 2, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[7] Fan, X.; Zhao, Y.; Zhao, D., Compact imbedding theorems with symmetry of Strauss-Lions type for the space \(W^{1, p(x)}(\Omega)\), Journal of Mathematical Analysis and Applications, 255, 1, 333-348 (2001) · Zbl 0988.46025 · doi:10.1006/jmaa.2000.7266
[8] Agarwal, R. P., Difference Equations and Inequalities. Difference Equations and Inequalities, Monographs and Textbooks in Pure and Applied Mathematics (2000), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0952.39001
[9] Agarwal, R. P.; Perera, K.; O’Regan, D., Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal A: Theory and Methods, 58, 1-2, 69-73 (2004) · Zbl 1070.39005 · doi:10.1016/j.na.2003.11.012
[10] Atici, F. M.; Guseinov, G. Sh., Positive periodic solutions for nonlinear difference equations with periodic coefficients, Journal of Mathematical Analysis and Applications, 232, 1, 166-182 (1999) · Zbl 0923.39010 · doi:10.1006/jmaa.1998.6257
[11] Guo, Z.; Yu, J., Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Science in China A. Mathematics, 46, 4, 506-515 (2003) · Zbl 1215.39001 · doi:10.1360/03ys9051
[12] Guo, Z.; Yu, J., The existence of periodic and subharmonic solutions of subquadratic second order difference equations, Journal of the London Mathematical Society, 68, 2, 419-430 (2003) · Zbl 1046.39005 · doi:10.1112/S0024610703004563
[13] Ma, M.; Guo, Z., Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal A: Theory and Methods, 67, 6, 1737-1745 (2007) · Zbl 1120.39007 · doi:10.1016/j.na.2006.08.014
[14] Ma, M.; Guo, Z., Homoclinic orbits for second order self-adjoint difference equations, Journal of Mathematical Analysis and Applications, 323, 1, 513-521 (2006) · Zbl 1107.39022 · doi:10.1016/j.jmaa.2005.10.049
[15] Yu, J.; Guo, Z.; Zou, X., Periodic solutions of second order self-adjoint difference equations, Journal of the London Mathematical Society, 71, 1, 146-160 (2005) · Zbl 1073.39009 · doi:10.1112/S0024610704005939
[16] Iannizzotto, A.; Tersian, S. A., Multiple homoclinic solutions for the discrete \(p\)-Laplacian via critical point theory, Journal of Mathematical Analysis and Applications, 403, 1, 173-182 (2013) · Zbl 1282.39003 · doi:10.1016/j.jmaa.2013.02.011
[17] Chen, P.; Tang, X. H.; Agarwal, R. P., Existence of homoclinic solutions for \(p(n)\)-Laplacian Hamiltonian systems on Orlicz sequence spaces, Mathematical and Computer Modelling, 55, 3-4, 989-1002 (2012) · Zbl 1255.39004 · doi:10.1016/j.mcm.2011.09.025
[18] Lindenstrauss, J.; Tzafriri, L., On Orlicz sequence spaces, Israel Journal of Mathematics, 10, 379-390 (1971) · Zbl 0227.46042 · doi:10.1007/BF02771656
[19] Lindberg, K., On subspaces of Orlicz sequence spaces, Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 45, 119-146 (1973) · Zbl 0217.16602
[20] El Hamidi, A., Existence results to elliptic systems with nonstandard growth conditions, Journal of Mathematical Analysis and Applications, 300, 1, 30-42 (2004) · Zbl 1148.35316 · doi:10.1016/j.jmaa.2004.05.041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.