×

On the exact series solution for nonhomogeneous strongly coupled mixed parabolic boundary value problems. (English) Zbl 1474.35364

Summary: An exact series solution for nonhomogeneous parabolic coupled systems of the type \(u_t - A u_{x x} = G \left(x, t\right), A_1 u \left(0, t\right) + B_1 u_x \left(0, t\right) = 0, A_2 u \left(l, t\right) + B_2 u_x \left(l, t\right) = 0, 0 < x < 1, t > 0, u \left(x, 0\right) = f \left(x\right)\), where \(A_1, A_2, B_1\), and \(B_2\) are arbitrary matrices for which the block matrix \(\begin{pmatrix} A_1 & B_1 \\ A_2 & B_2 \end{pmatrix}\) is nonsingular, and \(A\) is a positive stable matrix, is constructed.

MSC:

35K20 Initial-boundary value problems for second-order parabolic equations
35C10 Series solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alexander, M. H.; Manolopoulos, D. E., A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory, The Journal of Chemical Physics, 86, 4, 2044-2050 (1986)
[2] Melezhik, V. S.; Puzynin, I. V.; Puzynina, T. P.; Somov, L. N., Numerical solution of a system of integro-differential equations arising from the quantum mechanical three-body problem with Coulomb interaction, Journal of Computational Physics, 54, 2, 221-236 (1984) · Zbl 0531.65079 · doi:10.1016/0021-9991(84)90115-3
[3] Reid, W. T., Ordinary Differential Equations (1971), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0212.10901
[4] Levine, R. D.; Shapiro, M.; Johnson, B. R., Transition probabilities in molecular collisions: computational studies of rotational excitation, The Journal of Chemical Physics, 52, 4, 1755-1766 (1970) · doi:10.1063/1.1673214
[5] Schmalz, T. G.; Lill, J. V.; Light, J. C., Imbedded matrix Green’s functions in atomic and molecular scattering theory, The Journal of Chemical Physics, 78, 7, 4456-4463 (1983) · doi:10.1063/1.445338
[6] Mrugaía, F.; Secrest, D., The generalized log-derivative method for inelastic and reactive collisions, Journal of Chemical Physics, 78, 10, 5954-5961 (1983)
[7] Crank, J., The Mathematics of Diffusion (1995), Oxford University Press · Zbl 0071.41401
[8] Mikhailov, M. D.; Osizik, M. N., Unifield Analysis and Solutions of Heat and Mass Diffusion (1984), New York, NY, USA: John Wiley & Sons, New York, NY, USA
[9] Stakgold, I., Green’s Functions and Boundary Value Problems (1979), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0421.34027
[10] Hueckel, T.; Borsetto, M.; Peano, A., Modelling of Coupled Thermo-Elastoplastic Hydraulic Response of Clays Subjected to Nuclear Waste Heat (1987), New York, NY, USA: Wiley, New York, NY, USA
[11] Atkinson, F. V., Discrete and Continuous Boundary Problems (1964), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0117.05806
[12] Atkinson, F. V.; Krall, A. M.; Leaf, G. K.; Zettel, A., On the numerical computation of eigenvalues of Sturm-Liouville problems with matrix coefficients (1987), Argonne National Laboratory
[13] Marletta, M., Theory and implementation of algorithms for Sturm-Liouville systems [Ph.D. thesis] (1991), Cranfield, UK: Royal Military College of Science, Cranfield, UK
[14] Greenberg, L., A Prufer method for calculating eigenvalues of self-adjoint systems of ordinary differential equations, parts 1 and 2, TR91-24 (1991), University of Maryland
[15] Soler, V.; Defez, E.; Ferrer, M. V., On exact series solution of strongly coupled mixed parabolic problems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.35027 · doi:10.1155/2013/524514
[16] Soler, V.; Defez, E.; Verdoy, J. A., On exact series solution for strongly coupled mixed parabolic boundary value problems, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.35370 · doi:10.1155/2014/759427
[17] Campbell, S. L.; Meyer, C. D., Generalized Inverses, of Linear Transformations (1979), London, UK: Pitman, London, UK · Zbl 0417.15002
[18] Navarro, E.; Jódar, L.; Ferrer, M. V., Constructing eigenfunctions of strongly coupled parabolic boundary value systems, Applied Mathematics Letters, 15, 4, 429-434 (2002) · Zbl 1014.35065 · doi:10.1016/S0893-9659(01)00154-9
[19] Golub, G. H.; van Loan, C. F., Matrix Computation (1989), Baltimore, Md, USA: The Johns Hopkins University Press, Baltimore, Md, USA · Zbl 0733.65016
[20] Gradshteyn, I. S.; Ryzhik, I. M., Tables of Integrals, Series and Products (1980), Academic Press · Zbl 0521.33001
[21] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1934), Cambridge University Press · JFM 60.0169.01
[22] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1967), New York, NY, USA: McGraw-Hill, New York, NY, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.