×

Hopf bifurcation and global periodic solutions in a predator-prey system with Michaelis-Menten type functional response and two delays. (English) Zbl 1474.34481

Summary: We consider a predator-prey system with Michaelis-Menten type functional response and two delays. We focus on the case with two unequal and non-zero delays present in the model, study the local stability of the equilibria and the existence of Hopf bifurcation, and then obtain explicit formulas to determine the properties of Hopf bifurcation by using the normal form method and center manifold theorem. Special attention is paid to the global continuation of local Hopf bifurcation when the delays \(\tau_1 \neq \tau_2\).

MSC:

34K18 Bifurcation theory of functional-differential equations
92D25 Population dynamics (general)
34K13 Periodic solutions to functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xu, R.; Chaplain, M. A. J., Persistence and global stability in a delayed predator-prey system with Michaelis-Menten type functional response, Applied Mathematics and Computation, 130, 2-3, 441-455 (2002) · Zbl 1030.34069 · doi:10.1016/S0096-3003(01)00111-4
[2] Song, Y. L.; Peng, Y. H.; Wei, J. J., Bifurcations for a predator-prey system with two delays, Journal of Mathematical Analysis and Applications, 337, 1, 466-479 (2008) · Zbl 1132.34053 · doi:10.1016/j.jmaa.2007.04.001
[3] Hu, G.-P.; Li, W.-T.; Yan, X.-P., Hopf bifurcations in a predator-prey system with multiple delays, Chaos, Solitons & Fractals, 42, 2, 1273-1285 (2009) · Zbl 1198.34143 · doi:10.1016/j.chaos.2009.03.075
[4] Liao, M.; Tang, X.; Xu, C., Bifurcation analysis for a three-species predator-prey system with two delays, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 183-194 (2012) · Zbl 1243.92055 · doi:10.1016/j.cnsns.2011.03.040
[5] Xu, C.; Li, P., Dynamical analysis in a delayed predator-prey model with two delays, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1250.34068 · doi:10.1155/2012/652947
[6] Zhang, J.-F., Stability and bifurcation periodic solutions in a Lotka-Volterra competition system with multiple delays, Nonlinear Dynamics, 70, 1, 849-860 (2012) · Zbl 1267.34128 · doi:10.1007/s11071-012-0501-4
[7] Xia, J.; Yu, Z.; Yuan, R., Stability and Hopf bifurcation in a symmetric Lotka-Volterra predator-prey system with delays, Electronic Journal of Differential Equations, 2013, 9, 1-16 (2013) · Zbl 1290.34083
[8] Wan, H.; Cui, J., A malaria model with two delays, Discrete Dynamics in Nature and Society, 2013 (2013) · Zbl 1264.34165 · doi:10.1155/2013/601265
[9] Zhao, M., Hopf bifurcation analysis for a semiratio-dependent predator-prey system with two delays, Abstract and Applied Analysis, 2013 (2013) · Zbl 1297.34094 · doi:10.1155/2013/495072
[10] Feyissa, S.; Banerjee, S., Delay-induced oscillatory dynamics in humoral mediated immune response with two time delays, Nonlinear Analysis: Real World Applications, 14, 1, 35-52 (2013) · Zbl 1317.92036 · doi:10.1016/j.nonrwa.2012.05.001
[11] Zhang, G.; Shen, Y.; Chen, B., Hopf bifurcation of a predator-prey system with predator harvesting and two delays, Nonlinear Dynamics, 73, 4, 2119-2131 (2013) · Zbl 1281.92076 · doi:10.1007/s11071-013-0928-2
[12] Meng, X.-Y.; Huo, H.-F.; Xiang, H., Hopf bifurcation in a three-species system with delays, Journal of Applied Mathematics and Computing, 35, 1-2, 635-661 (2011) · Zbl 1209.92058 · doi:10.1007/s12190-010-0383-x
[13] Zhang, J.-F., Global existence of bifurcated periodic solutions in a commensalism model with delays, Applied Mathematics and Computation, 218, 23, 11688-11699 (2012) · Zbl 1278.92042 · doi:10.1016/j.amc.2012.05.056
[14] Wang, Y.; Jiang, W.; Wang, H., Stability and global Hopf bifurcation in toxic phytoplankton-zooplankton model with delay and selective harvesting, Nonlinear Dynamics, 73, 1-2, 881-896 (2013) · Zbl 1281.92074 · doi:10.1007/s11071-013-0839-2
[15] Ma, Y., Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays, Nonlinear Analysis: Real World Applications, 13, 1, 370-375 (2012) · Zbl 1238.34130 · doi:10.1016/j.nonrwa.2011.07.045
[16] Meng, X.-Y.; Huo, H.-F.; Zhang, X.-B., Stability and global Hopf bifurcation in a delayed food web consisting of a prey and two predators, Communications in Nonlinear Science and Numerical Simulation, 16, 11, 4335-4348 (2011) · Zbl 1219.92065 · doi:10.1016/j.cnsns.2011.03.009
[17] Song, Y.; Wei, J.; Han, M., Local and global Hopf bifurcation in a delayed hematopoiesis model, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14, 11, 3909-3919 (2004) · Zbl 1090.37547 · doi:10.1142/S0218127404011697
[18] Song, Y.; Wei, J., Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Journal of Mathematical Analysis and Applications, 301, 1, 1-21 (2005) · Zbl 1067.34076 · doi:10.1016/j.jmaa.2004.06.056
[19] Wei, J.; Li, M. Y., Global existence of periodic solutions in a tri-neuron network model with delays, Physica D, 198, 1-2, 106-119 (2004) · Zbl 1062.34077 · doi:10.1016/j.physd.2004.08.023
[20] Zhao, T.; Kuang, Y.; Smith, H. L., Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems, Nonlinear Analysis: Theory, Methods & Applications, 28, 8, 1373-1394 (1997) · Zbl 0872.34047 · doi:10.1016/0362-546X(95)00230-S
[21] Gao, S. J.; Chen, L. S.; Teng, Z. D., Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator, Applied Mathematics and Computation, 202, 2, 721-729 (2008) · Zbl 1151.34067 · doi:10.1016/j.amc.2008.03.011
[22] Hale, J., Theory of Functional Differential Equations (1977), New York, NY, USA: Springer, New York, NY, USA · Zbl 0352.34001
[23] Hassard, B.; Kazarinoff, D.; Wan, Y., Theory and Applications of Hopf Bifurcation (1981), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0474.34002
[24] Wu, J. H., Symmetric functional-differential equations and neural networks with memory, Transactions of the American Mathematical Society, 350, 12, 4799-4838 (1998) · Zbl 0905.34034 · doi:10.1090/S0002-9947-98-02083-2
[25] Hutson, V., The existence of an equilibrium for permanent systems, The Rocky Mountain Journal of Mathematics, 20, 4, 1033-1040 (1990) · Zbl 0722.92012 · doi:10.1216/rmjm/1181073060
[26] Ruan, S. G.; Wei, J. J., On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Discrete & Impulsive Systems A, 10, 6, 863-874 (2003) · Zbl 1068.34072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.