×

Construction of fusion frame systems in finite dimensional Hilbert spaces. (English) Zbl 1474.42124

Summary: We first investigate the construction of a fusion frame system in a finite-dimensional Hilbert space \(\mathbb{F}^n\) when its fusion frame operator matrix is given and provides a corresponding algorithm. The matrix representations of its local frame operators and inverse frame operators are naturally obtained. We then study the related properties of the constructed fusion frame systems. Finally, we implement the construction of fusion frame systems which behave optimally for erasures in some special sense in signal transmission.

MSC:

42C15 General harmonic expansions, frames
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cidon, I.; Kodesh, H.; Sidi, M., Erasure, capture, and random power level selection in multiple-access systems, IEEE Transactions on Communications, 36, 3, 263-271 (1988)
[2] Dana, A. F.; Gowaikar, R.; Palanki, R.; Hassibi, B.; Effros, M., Capacity of wireless erasure networks, IEEE Transactions on Information Theory, 52, 3, 789-804 (2006) · Zbl 1293.94032 · doi:10.1109/TIT.2005.864424
[3] Han, D.; Kornelson, K.; Larson, D.; Weber, E., Frames for Undergraduates. Frames for Undergraduates, Mathematical Library Book Series, 40, xiv+295 (2007), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1143.42001
[4] Candès, E. J.; Donoho, D. L., New tight frames of curvelets and optimal representations of objects with piecewise \(C^2\) singularities, Communications on Pure and Applied Mathematics, 57, 2, 219-266 (2004) · Zbl 1038.94502 · doi:10.1002/cpa.10116
[5] Bodmann, B. G.; Paulsen, V. I., Frame paths and error bounds for sigma-delta quantization, Applied and Computational Harmonic Analysis, 22, 2, 176-197 (2007) · Zbl 1133.94013 · doi:10.1016/j.acha.2006.05.010
[6] Bennett, C. H.; DiVincenzo, D. P.; Smolin, J. A., Capacities of quantum erasure channels, Physical Review Letters, 78, 16, 3217-3220 (1997) · Zbl 0944.81008 · doi:10.1103/PhysRevLett.78.3217
[7] Bodmann, B. G.; Paulsen, V. I., Frames, graphs and erasures, Linear Algebra and its Applications, 404, 118-146 (2005) · Zbl 1088.46009 · doi:10.1016/j.laa.2005.02.016
[8] Goyal, V. K.; Kovačević, J.; Kelner, J. A., Quantized frame expansions with erasures, Applied and Computational Harmonic Analysis, 10, 3, 203-233 (2001) · Zbl 0992.94009 · doi:10.1006/acha.2000.0340
[9] Holmes, R. B.; Paulsen, V. I., Optimal frames for erasures, Linear Algebra and its Applications, 377, 31-51 (2004) · Zbl 1042.46009 · doi:10.1016/j.laa.2003.07.012
[10] Leng, J.; Han, D., Optimal dual frames for erasures II, Linear Algebra and its Applications, 435, 6, 1464-1472 (2011) · Zbl 1235.42028 · doi:10.1016/j.laa.2011.03.043
[11] Leng, J. S.; Han, D.; Huang, T., Optimal dual frames for communication coding with probabilistic erasures, IEEE Transactions on Signal Processing, 59, 11, 5380-5389 (2011) · Zbl 1393.94747 · doi:10.1109/TSP.2011.2162955
[12] Leng, J. S.; Han, D.; Huang, T., Probability modelled optimal frames for erasures, Linear Algebra and its Applications, 438, 11, 4222-4236 (2013) · Zbl 1280.42027 · doi:10.1016/j.laa.2013.01.020
[13] Albanese, A.; Blömer, J.; Edmonds, J.; Luby, M.; Sudan, M., Priority encoding transmission, IEEE Transactions on Information Theory, 42, 6, part 1, 1737-1744 (1996) · Zbl 0867.94038 · doi:10.1109/18.556670
[14] Casazza, P. G.; Kutyniok, G., Frames of subspaces, Wavelets, Frames, and Operator Theory. Wavelets, Frames, and Operator Theory, Contemporary Mathematics Series, 345, 87-113 (2004), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1058.42019 · doi:10.1090/conm/345/06242
[15] Casazza, P. G.; Kutyniok, G.; Li, S., Fusion frames and distributed processing, Applied and Computational Harmonic Analysis, 25, 1, 114-132 (2008) · Zbl 1258.42029 · doi:10.1016/j.acha.2007.10.001
[16] Casazza, P. G.; Fickus, M., Minimizing fusion frame potential, Acta Applicandae Mathematicae, 107, 1-3, 7-24 (2009) · Zbl 1175.42010 · doi:10.1007/s10440-008-9377-1
[17] Casazza, P. G.; Fickus, M.; Mixon, D. G.; Wang, Y.; Zhou, Z., Constructing tight fusion frames, Applied and Computational Harmonic Analysis, 30, 2, 175-187 (2011) · Zbl 1221.42052 · doi:10.1016/j.acha.2010.05.002
[18] Casazza, P. G.; Kutyniok, G., Robustness of fusion frames under erasures of subspaces and of local frame vectors, Radon Transforms, Geometry, and Wavelets. Radon Transforms, Geometry, and Wavelets, Contemporary Mathematics Series, 464, 149-160 (2008), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1256.94017 · doi:10.1090/conm/464/09082
[19] Leng, J. S.; Han, D., Orthogonal projection decomposition of matrices and construction of fusion frames, Advances in Computational Mathematics, 38, 2, 369-381 (2013) · Zbl 1263.42011 · doi:10.1007/s10444-011-9241-0
[20] Massey, P. G.; Ruiz, M. A.; Stojanoff, D., The structure of minimizers of the frame potential on fusion frames, The Journal of Fourier Analysis and Applications, 16, 4, 514-543 (2010) · Zbl 1194.42039 · doi:10.1007/s00041-009-9098-5
[21] Casazza, P. G.; Kutyniok, G.; Li, S.; Rozell, C. J., Modeling sensor networks with fusion frames, Wavelets XII · doi:10.1117/12.730719
[22] Bodmann, B. G., Optimal linear transmission by loss-insensitive packet encoding, Applied and Computational Harmonic Analysis, 22, 3, 274-285 (2007) · Zbl 1193.42113 · doi:10.1016/j.acha.2006.07.003
[23] Bodmann, B. G.; Kutyniok, G., Erasure-proof transmissions: fusion frames meet coding theory, Wavelets XIII · doi:10.1117/12.826282
[24] Bodmann, B. G.; Kribs, D. W.; Paulsen, V. I., Decoherence-insensitive quantum communication by optimal \(C^{a s t}\)-encoding, IEEE Transactions on Information Theory, 53, 12, 4738-4749 (2007) · Zbl 1325.81029 · doi:10.1109/TIT.2007.909105
[25] Leng, J. S.; Guo, Q. X.; Huang, T. Z., The duals of fusion frames for experimental data transmission coding of high energy physics, Advances in High Energy Physics, 2013 (2013) · Zbl 1328.94042 · doi:10.1155/2013/837129
[26] Cattani, C.; Ciancio, A., Separable transition density in the hybrid model for tumor-immune system competition, Computational and Mathematical Methods in Medicine, 2012 (2012) · Zbl 1234.92026 · doi:10.1155/2012/610124
[27] Cattani, C.; Ciancio, A.; Lods, B., On a mathematical model of immune competition, Applied Mathematics Letters, 19, 7, 678-683 (2006) · Zbl 1278.92017 · doi:10.1016/j.aml.2005.09.001
[28] Cattani, C.; Ruiz, L. M. S., Discrete differential operators in multidimensional Haar wavelet spaces, International Journal of Mathematics and Mathematical Sciences, 41-44, 2347-2355 (2004) · Zbl 1075.39008 · doi:10.1155/S0161171204307234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.