×

Best proximity point results in \(G\)-metric spaces. (English) Zbl 1474.54168

Summary: \(G\)-metric spaces proved to be a rich source for fixed point theory; however, the best proximity point problem has not been considered in such spaces. The aim of this paper is to introduce certain new classes of proximal contraction mappings and establish the best proximity point theorems for such kind of mappings in \(G\)-metric spaces. As a consequence of these results, we deduce certain new best proximity and fixed point results. Moreover, we present an example to illustrate the usability of the obtained results.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)

References:

[1] Fan, K., Extensions of two fixed point theorems of F. E. Browder, Mathematische Zeitschrift, 112, 3, 234-240 (1969) · Zbl 0185.39503 · doi:10.1007/BF01110225
[2] di Bari, C.; Suzuki, T.; Vetro, C., Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Analysis: Theory, Methods & Applications, 69, 11, 3790-3794 (2008) · Zbl 1169.54021 · doi:10.1016/j.na.2007.10.014
[3] Sadiq Basha, S., Extensions of Banach’s contraction principle, Numerical Functional Analysis and Optimization, 31, 4-6, 569-576 (2010) · Zbl 1200.54021 · doi:10.1080/01630563.2010.485713
[4] Hussain, N.; Kutbi, M. A.; Salimi, P., Best proximity point results for modified \(\alpha-\psi \)-proximal rational contractions, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.54065 · doi:10.1155/2013/927457
[5] Amini-Harandi, A.; Hussain, N.; Akbar, F., Best proximity point results for generalized contractions in metric spaces, Fixed Point Theory and Applications, 2013, article 164 (2013) · Zbl 1297.47061 · doi:10.1186/1687-1812-2013-164
[6] Hussain, N.; Latif, A.; Salimi, P., Best proximity point results for modified Suzuki \(\alpha-\psi \)-proximal contractions, Fixed Point Theory and Applications, 2014, article 10 (2014) · Zbl 1310.41029 · doi:10.1186/1687-1812-2014-10
[7] Suzuki, T.; Kikkawa, M.; Vetro, C., The existence of best proximity points in metric spaces with the property UC, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2918-2926 (2009) · Zbl 1178.54029 · doi:10.1016/j.na.2009.01.173
[8] Aydi, H.; Karapınar, E.; Salimi, P., Some fixed point results in \(G P\)-metric spaces, Journal of Applied Mathematics, 2012 (2012) · Zbl 1266.54084 · doi:10.1155/2012/891713
[9] Hussain, N.; Karapınar, E.; Salimi, P.; Vetro, P., Fixed point results for \(G^m\)-Meir-Keeler contractive and \(G-(\alpha, \psi)\)-Meir-Keeler contractive mappings, Fixed Point Theory and Applications, 2013, article 34 (2013) · Zbl 1293.54024 · doi:10.1186/1687-1812-2013-34
[10] Razani, A.; Parvaneh, V., On generalized weakly \(G\)-contractive mappings in partially ordered \(G\)-metric spaces, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.54047 · doi:10.1155/2012/701910
[11] Mustafa, Z.; Parvaneh, V.; Abbas, M.; Roshan, J. R., Some coincidence point results for generalized \(( \psi, \phi )\)-weakly contractive mappings in ordered \(G\)-metric spaces, Fixed Point Theory and Applications, 2013, article 326 (2013) · Zbl 1423.54092 · doi:10.1186/1687-1812-2013-326
[12] Moradlou, F.; Salimi, P.; Vetro, P., Some new extensions of Edelstein-Suzuki-type fixed point theorem to \(G\)-metric and \(G\)-cone metric spaces, Acta Mathematica Scientia B, 33, 4, 1049-1058 (2013) · Zbl 1299.54103 · doi:10.1016/S0252-9602(13)60062-4
[13] Radenović, S.; Pantelić, S.; Salimi, P.; Vujaković, J., A note on some tripled coincidence point results in \(G\)-metric spaces, International Journal of Mathematical Sciences and Engineering Applications, 6, 6, 23-38 (2012)
[14] Salimi, P.; Vetro, P., A result of Suzuki type in partial \(G\)-metric spaces, Acta Mathematica Scientia B, 34, 2, article 111 (2014) · Zbl 1313.54109
[15] Samet, B.; Vetro, C.; Vetro, F., Remarks on \(G\)-metric spaces, International Journal of Analysis, 2013 (2013) · Zbl 1268.54010 · doi:10.1155/2013/917158
[16] Jleli, M.; Samet, B., Remarks on \(G\)-metric spaces and fixed point theorems, Fixed Point Theory and Applications, 2012, article 210 (2012) · Zbl 1398.54073 · doi:10.1186/1687-1812-2012-210
[17] Asadi, M.; Karapinar, E.; Salimi, P., A new approach to \(G\)-metric and related fixed point theorems, Journal of Inequalities and Applications, 2013, article 454 (2013) · Zbl 1420.54067 · doi:10.1186/1029-242X-2013-454
[18] Mustafa, Z.; Sims, B., A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7, 2, 289-297 (2006) · Zbl 1111.54025
[19] Mustafa, Z., A new structure for generalized metric spaces with applications to fixed point theory [Ph.D. thesis] (2005), New South Wales, Australia: The University of Newcastle, New South Wales, Australia
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.