×

Invariant solutions and conservation laws of the (2 + 1)-dimensional Boussinesq equation. (English) Zbl 1474.35569

Summary: Invariant solutions and conservation laws of the (2 + 1)-dimensional Boussinesq equation are studied. The Lie symmetry approach is used to obtain the invariant solutions. Conservation laws for the underlying equation are derived by utilizing the new conservation theorem and the partial Lagrange approach.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[2] Matveev, V. B.; Salle, M. A., Darboux Transformations and Solitons (1991), Berlin, Germany: Springer, Berlin, Germany · Zbl 0744.35045 · doi:10.1007/978-3-662-00922-2
[3] Chen, Y.; Yan, Z. Y.; Zhang, H. Q., Exact solutions for a family of variable-coefficient reaction—duffing equations via the Backlund transformation, Theoretical and Mathematical Physics, 132, 1, 970-975 (2002) · Zbl 1129.35432
[4] Wazwaz, A., The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves, Applied Mathematics and Computation, 201, 1-2, 489-503 (2008) · Zbl 1143.76018 · doi:10.1016/j.amc.2007.12.037
[5] Fan, E.; Zhang, H., A note on the homogeneous balance method, Physics Letters A, 246, 5, 403-406 (1998) · Zbl 1125.35308
[6] Fan, E., Two new applications of the homogeneous balance method, Physics Letters A, 265, 5-6, 353-357 (2000) · Zbl 0947.35012 · doi:10.1016/S0375-9601(00)00010-4
[7] Lou, S. Y.; Ruan, H. Y.; Chen, D. F.; Chen, W. Z., Similarity reductions of the KP equation by a direct method, Journal of Physics A: Mathematical and General, 24, 7, 1455-1467 (1991) · Zbl 0734.35122 · doi:10.1088/0305-4470/24/7/019
[8] Lou, S.; Tang, X.; Lin, J., Similarity and conditional similarity reductions of a \(( 2 + 1 )\)-dimensional KdV equation via a direct method, Journal of Mathematical Physics, 41, 12, 8286-8303 (2000) · Zbl 1004.37047 · doi:10.1063/1.1320859
[9] Wazwaz, A., The tanh method for traveling wave solutions of nonlinear equations, Applied Mathematics and Computation, 154, 3, 713-723 (2004) · Zbl 1054.65106 · doi:10.1016/S0096-3003(03)00745-8
[10] Yusufoglu, E.; Bekir, A., Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, International Journal of Computer Mathematics, 83, 12, 915-924 (2006) · Zbl 1115.35117 · doi:10.1080/00207160601138756
[11] Hydon, P. E., Symmetry Methods for Differential Equations: A Beginners Guide (2000), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0951.34001
[12] Mahomed, F. M., Symmetry group classification of ordinary differential equations: survey of some results, Mathematical Methods in the Applied Sciences, 30, 16, 1995-2012 (2007) · Zbl 1135.34029 · doi:10.1002/mma.934
[13] Hirota, R.; Bullogh, R. K.; Caudrey, P. J., Direct methods in soliton theory, Solitons (1980), Berlin, Germany: Springer, Berlin, Germany
[14] Hirota, R., Exact envelope-soliton solutions of a nonlinear wave equation, Journal of Mathematical Physics, 14, 805-809 (1973) · Zbl 0257.35052 · doi:10.1063/1.1666399
[15] Krishnan, E. V.; Kumar, S.; Biswas, A., Solitons and other nonlinear waves of the Boussinesq equation, Nonlinear Dynamics, 70, 2, 1213-1221 (2012) · Zbl 1268.35023 · doi:10.1007/s11071-012-0525-9
[16] Yang, H. W.; Yin, B. S.; Shi, Y. L., Forced dissipative Boussinesq equation for solitary waves excited by unstable topography, Nonlinear Dynamics, 70, 2, 1389-1396 (2012) · doi:10.1007/s11071-012-0541-9
[17] El-Sayed, S. M.; Kaya, D., The decomposition method for solving (2+1)-dimensional Boussinesq equation and (3+1)-dimensional {KP} equation, Applied Mathematics and Computation, 157, 2, 523-534 (2004) · Zbl 1058.65111 · doi:10.1016/j.amc.2003.08.059
[18] Senthilvelan, M., On the extended applications of homogeneous balance method, Applied Mathematics and Computation, 123, 3, 381-388 (2001) · Zbl 1032.35159 · doi:10.1016/S0096-3003(00)00076-X
[19] Chen, Y.; Yan, Z.; Zhang, H., New explicit solitary wave solutions for \((2 + 1)\)-dimensional Boussinesq equation and \((3 + 1)\)-dimensional KP equation, Physics Letters A, 307, 2-3, 107-113 (2003) · Zbl 1006.35083 · doi:10.1016/S0375-9601(02)01668-7
[20] Huai-Tang, C.; Hong-Qing, Z., New double periodic and multiple soliton solutions of the generalized \(( 2 + 1 )\)-dimensional Boussinesq equation, Chaos, Solitons and Fractals, 20, 4, 765-769 (2004) · Zbl 1049.35150 · doi:10.1016/j.chaos.2003.08.006
[21] Bluman, G. W.; Kumei, S., Symmetries and Differential Equations. Symmetries and Differential Equations, Applied Mathematical Sciences, 81 (1989), New York, NY, USA: Springer, New York, NY, USA · Zbl 0698.35001 · doi:10.1007/978-1-4757-4307-4
[22] Olver, P. J., Applications of Lie Groups to Differential Equations. Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107 (1993), Berlin, Germany: Springer, Berlin, Germany · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[23] Ibragimov, N. H., A new conservation theorem, Journal of Mathematical Analysis and Applications, 333, 1, 311-328 (2007) · Zbl 1160.35008 · doi:10.1016/j.jmaa.2006.10.078
[24] Ibragimov, N. H.; Kolsrud, T., Lagrangian approach to evolution equations: symmetries and conservation laws, Nonlinear Dynamics, 36, 1, 29-40 (2004) · Zbl 1106.70012 · doi:10.1023/B:NODY.0000034644.82259.1f
[25] Kara, A. H.; Mahomed, F. M., Relationship between symmetries and conservation laws, International Journal of Theoretical Physics, 39, 1, 23-40 (2000) · Zbl 0962.35009 · doi:10.1023/A:1003686831523
[26] Kara, A. H.; Mahomed, F. M., Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear Dynamics, 45, 3-4, 367-383 (2006) · Zbl 1121.70014 · doi:10.1007/s11071-005-9013-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.