×

Stability of exact and discrete energy for non-Fickian reaction-diffusion equations with a variable delay. (English) Zbl 1474.35621

Summary: This paper is concerned with the stability of non-Fickian reaction-diffusion equations with a variable delay. It is shown that the perturbation of the energy function of the continuous problems decays exponentially, which provides a more accurate and convenient way to express the rate of decay of energy. Then, we prove that the proposed numerical methods are sufficient to preserve energy stability of the continuous problems. We end the paper with some numerical experiments on a biological model to confirm the theoretical results.

MSC:

35R10 Partial functional-differential equations
35K57 Reaction-diffusion equations
45K05 Integro-partial differential equations

References:

[1] Agarwal, R. P.; Berezansky, L.; Braverman, E.; Domoshnitsky, A., Nonoscillation Theory of Functional Differential Equations with Applications (2012), New York, NY, USA: Springer, New York, NY, USA · Zbl 1253.34002 · doi:10.1007/978-1-4614-3455-9
[2] Brunner, H., Collocation Methods for Volterra Integral and Related Functional Differential Equations (2004), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1059.65122 · doi:10.1017/CBO9780511543234
[3] Wu, J. H., Theory and Application of Partial Functional Differential Equation. Theory and Application of Partial Functional Differential Equation, Applied Mathematical Sciences, 119 (1996), Springer-Verlag · Zbl 0870.35116 · doi:10.1007/978-1-4612-4050-1
[4] Berezansky, L.; Braverman, E.; Idels, L., Nicholson’s blowflies differential equations revisited: main results and open problems, Applied Mathematical Modelling, 34, 6, 1405-1417 (2010) · Zbl 1193.34149 · doi:10.1016/j.apm.2009.08.027
[5] Li, D.; Zhang, C.; Qin, H., LDG method for reaction-diffusion dynamical systems with time delay, Applied Mathematics and Computation, 217, 22, 9173-9181 (2011) · Zbl 1239.65062 · doi:10.1016/j.amc.2011.03.153
[6] Mei, M.; Lin, C.-K.; Lin, C.-T.; So, J. W.-H., Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, Journal of Differential Equations, 247, 2, 495-510 (2009) · Zbl 1173.35071 · doi:10.1016/j.jde.2008.12.026
[7] Mei, M.; Ou, C.; Zhao, X.-Q., Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM Journal on Mathematical Analysis, 42, 6, 2762-2790 (2010) · Zbl 1228.35043 · doi:10.1137/090776342
[8] Wu, J.; Wei, D.; Mei, M., Analysis on the critical speed of traveling waves, Applied Mathematics Letters, 20, 6, 712-718 (2007) · Zbl 1113.35097 · doi:10.1016/j.aml.2006.08.006
[9] Wang, Z.-C.; Li, W.-T.; Ruan, S., Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays, Journal of Differential Equations, 222, 1, 185-232 (2006) · Zbl 1100.35050 · doi:10.1016/j.jde.2005.08.010
[10] Joseph, D. D.; Preziosi, L., Heat waves, Reviews of Modern Physics, 61, 1, 41-73 (1989) · Zbl 1129.80300 · doi:10.1103/RevModPhys.61.41
[11] Fedotov, S., Traveling waves in a reaction-diffusion system: diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics, Physical Review E, 58, 4, 5143-5145 (1998) · doi:10.1103/PhysRevE.58.5143
[12] Andreu, F.; Caselles, V.; Mazón, J. M., A Fisher-Kolmogorov equation with finite speed of propagation, Journal of Differential Equations, 248, 10, 2528-2561 (2010) · Zbl 1198.35121 · doi:10.1016/j.jde.2010.01.005
[13] Branco, J. R.; Ferreira, J. A.; da Silva, P., Non-Fickian delay reaction-diffusion equations: theoretical and numerical study, Applied Numerical Mathematics, 60, 5, 531-549 (2010) · Zbl 1197.65221 · doi:10.1016/j.apnum.2010.01.003
[14] Araújo, A.; Branco, J. R.; Ferreira, J. A., On the stability of a class of splitting methods for integro-differential equations, Applied Numerical Mathematics, 59, 3-4, 436-453 (2009) · Zbl 1169.65117 · doi:10.1016/j.apnum.2008.03.005
[15] Branco, J. R.; Ferreira, J. A.; de Oliveira, P., Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation, Applied Numerical Mathematics, 57, 1, 89-102 (2007) · Zbl 1105.65123 · doi:10.1016/j.apnum.2006.01.002
[16] Chang, J.-C., Local existence for retarded Volterra integrodifferential equations with Hille-Yosida operators, Nonlinear Analysis. Theory, Methods & Applications, 66, 12, 2814-2832 (2007) · Zbl 1123.34059 · doi:10.1016/j.na.2006.04.009
[17] Araújo, A.; Ferreira, J. A.; Oliveira, P., Qualitative behavior of numerical traveling solutions for reaction-diffusion equations with memory, Applicable Analysis, 84, 12, 1231-1246 (2005) · Zbl 1083.65076 · doi:10.1080/00036810500048277
[18] Araújo, A.; Ferreira, J. A.; Oliveira, P., The effect of memory terms in diffusion phenomena, Journal of Computational Mathematics, 24, 1, 91-102 (2006) · Zbl 1100.65120
[19] Zhang, C.; Vandewalle, S., General linear methods for Volterra integro-differential equations with memory, SIAM Journal on Scientific Computing, 27, 6, 2010-2031 (2006) · Zbl 1104.65133 · doi:10.1137/040607058
[20] Wang, W.; Zhang, C.; Li, D., Asymptotic stability of exact and discrete solutions for neutral multidelay-integro-differential equations, Applied Mathematical Modelling, 35, 9, 4490-4506 (2011) · Zbl 1225.65125 · doi:10.1016/j.apm.2011.03.019
[21] Wang, W.; Zhang, C., Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space, Numerische Mathematik, 115, 3, 451-474 (2010) · Zbl 1193.65140 · doi:10.1007/s00211-009-0281-z
[22] Wang, W.; Zhang, C., Analytical and numerical dissipativity for nonlinear generalized pantograph equations, Discrete and Continuous Dynamical Systems A, 29, 3, 1245-1260 (2011) · Zbl 1225.65068 · doi:10.3934/dcds.2011.29.1245
[23] Wen, L.; Yu, Y.; Wang, W., Generalized Halanay inequalities for dissipativity of Volterra functional differential equations, Journal of Mathematical Analysis and Applications, 347, 1, 169-178 (2008) · Zbl 1161.34047 · doi:10.1016/j.jmaa.2008.05.007
[24] Méndez, V.; Fedotov, S.; Horsthemke, W., Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities, Springer Series in Synergetics (2010) · doi:10.1007/978-3-642-11443-4
[25] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Oxford: Oxford University Press, Oxford · Zbl 1038.65058 · doi:10.1093/acprof:oso/9780198506546.001.0001
[26] Brunner, H., Recent advances in the numerical analysis of Volterra functional differential equations with variable delays, Journal of Computational and Applied Mathematics, 228, 2, 524-537 (2009) · Zbl 1170.65103 · doi:10.1016/j.cam.2008.03.024
[27] Brunner, H., Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays, Frontiers of Mathematics in China, 4, 1, 3-22 (2009) · Zbl 1396.65161 · doi:10.1007/s11464-009-0001-0
[28] Yadav, A.; Fedotov, S.; Méndez, V.; Horsthemke, W., Propagating fronts in reaction C- transport systems with memory, Physics Letters A, 371, 374-378 (2007)
[29] Fedotov, S., Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts, Physical Review E, 81, 1 (2010) · doi:10.1103/PhysRevE.81.011117
[30] Fedotov, S.; Iomin, A.; Ryashko, L., Non-Markovian models for migration-proliferation dichotomy of cancer cells: anomalous switching and spreading rate, Physical Review E, 84, 6 (2011) · doi:10.1103/PhysRevE.84.061131
[31] Zhang, C.; Zhou, S., The asymptotic stability of theoretical and numerical solutions for systems of neutral multidelay-differential equations, Science in China A, 41, 11, 1151-1157 (1998) · Zbl 0924.65079 · doi:10.1007/BF02871977
[32] Zhang, C.-J.; Li, S.-F., Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations, Applied Mathematics and Computation, 119, 1, 109-115 (2001) · Zbl 1030.34067 · doi:10.1016/S0096-3003(99)00264-7
[33] Li, D.; Zhang, C.; Wang, W., Long time behavior of non-Fickian delay reaction-diffusion equations, Nonlinear Analysis. Real World Applications, 13, 3, 1401-1415 (2012) · Zbl 1239.35069 · doi:10.1016/j.nonrwa.2011.11.005
[34] Cannon, J. R.; Lin, Y. P., A priori \(L^2\) error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM Journal on Numerical Analysis, 27, 3, 595-607 (1990) · Zbl 0709.65122 · doi:10.1137/0727036
[35] Cannon, J. R.; Lint, Y., Error estimates for semidiscrete finite element methods for parabolic integro-Differential equations, Mathematics of Computation, 187, 53, 121-139 (1989) · Zbl 0673.65099
[36] Tian, H., Numerical and analytic dissipativity of the \(\theta \)-method for delay differential equations with a bounded variable lag, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14, 5, 1839-1845 (2004) · Zbl 1069.65077 · doi:10.1142/S0218127404010096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.