Zhang, Guowei; Wang, Jian; Yang, Lianzhong On radial distribution of Julia sets of solutions to certain second order complex linear differential equations. (English) Zbl 1474.37047 Abstr. Appl. Anal. 2014, Article ID 842693, 6 p. (2014). Summary: We mainly investigate the radial distribution of the Julia set of entire solutions to a special second order complex linear differential equation, one of the entire coefficients of which has a finite deficient value. MSC: 37F50 Small divisors, rotation domains and linearization in holomorphic dynamics 34M03 Linear ordinary differential equations and systems in the complex domain 30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory PDF BibTeX XML Cite \textit{G. Zhang} et al., Abstr. Appl. Anal. 2014, Article ID 842693, 6 p. (2014; Zbl 1474.37047) Full Text: DOI References: [1] Goldberg, A. A.; Ostrovskii, I. V., Value Distribution of Meromorphic Functions. Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs, 236 (2008), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1152.30026 [2] Hayman, W. K., Meromorphic Functions (1964), Oxford, UK: Clarendon Press, Oxford, UK [3] Laine, I., Nevanlinna Theory and Complex Differential Equations. Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, 15 (1993), Berlin, Germany: Walter de Gruyter, Berlin, Germany · Zbl 0784.30002 [4] Yang, L., Value Distribution Theory (1993), Berlin, Germany: Springer, Berlin, Germany [5] Yang, C.-C.; Yi, H.-X., Uniqueness Theory of Meromorphic Functions. Uniqueness Theory of Meromorphic Functions, Mathematics and Its Applications, 557 (2003), Dodrecht, The Netherlands: Science Press, Beijing, China; Kluwer Academic Publishers, Dodrecht, The Netherlands · Zbl 1070.30011 [6] Bergweiler, W., Iteration of meromorphic functions, Bulletin of the American Mathematical Society, 29, 2, 151-188 (1993) · Zbl 0791.30018 [7] Zheng, J. H., Dynamics of Meromorphic Functions (2006), Beijing, China: Tsinghua University Press, Beijing, China [8] Baker, I. N., Sets of non-normality in iteration theory, Journal of the London Mathematical Society, 40, 499-502 (1965) · Zbl 0136.37804 [9] Qiao, J., Julia set of entire functions and their derivatives, Chinese Science Bulletin, 39, 3, 186-188 (1994) · Zbl 0794.30022 [10] Qiao, J. Y., Stable sets for iterations of entire functions, Acta Mathematica Sinica, 37, 5, 702-708 (1994) · Zbl 0814.30019 [11] Qiao, J., On limiting directions of Julia sets, Annales Academiæ Scientiarum Fennicæ, 26, 2, 391-399 (2001) · Zbl 1002.30022 [12] Qiu, L.; Wu, S., Radial distributions of Julia sets of meromorphic functions, Journal of the Australian Mathematical Society, 81, 3, 363-368 (2006) · Zbl 1115.30039 [13] Wang, S., On radial distribution of Julia sets of meromorphic functions, Taiwanese Journal of Mathematics, 11, 5, 1301-1313 (2007) · Zbl 1132.30333 [14] Zheng, J.-H.; Wang, S.; Huang, Z.-G., Some properties of Fatou and Julia sets of transcendental meromorphic functions, Bulletin of the Australian Mathematical Society, 66, 1, 1-8 (2002) · Zbl 1002.37022 [15] Huang, Z.; Wang, J., On the radial distribution of Julia sets of entire solutions of \(f^{(n)} + A(z) f = 0\), Journal of Mathematical Analysis and Applications, 387, 2, 1106-1113 (2012) · Zbl 1238.37012 [16] Huang, Z.-G.; Wang, J., On limit directions of Julia sets of entire solutions of linear differential equations, Journal of Mathematical Analysis and Applications, 409, 1, 478-484 (2014) · Zbl 1314.34174 [17] Wu, P.; Zhu, J., On the growth of solutions to the complex differential equation \(f^{\prime \prime} + A f^\prime + B f = 0\), Science China, 54, 5, 939-947 (2011) · Zbl 1218.30082 [18] Barry, P. D., Some theorems related to the \(\text{cos} \pi \rho\) theorem, Proceedings of the London Mathematical Society, 21, 334-360 (1970) · Zbl 0204.42302 [19] Baker, I. N., The domains of normality of an entire function, Annales Academiæ Scientiarum Fennicæ, 1, 2, 277-283 (1975) · Zbl 0329.30019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.