×

Stability switches and Hopf bifurcation in a coupled FitzHugh-Nagumo neural system with multiple delays. (English) Zbl 1474.34488

Summary: A FitzHugh-Nagumo (FHN) neural system with multiple delays has been proposed. The number of equilibrium point is analyzed. It implies that the neural system exhibits a unique equilibrium and three ones for the different values of coupling weight by employing the saddle-node bifurcation of nontrivial equilibrium point and transcritical bifurcation of trivial one. Further, the stability of equilibrium point is studied by analyzing the corresponding characteristic equation. Some stability criteria involving the multiple delays and coupling weight are obtained. The results show that the neural system exhibits the delay-independence and delay-dependence stability. Increasing delay induces the stability switching between resting state and periodic activity in some parameter regions of coupling weight. Finally, numerical simulations are taken to support the theoretical results.

MSC:

34K18 Bifurcation theory of functional-differential equations
92C20 Neural biology

References:

[1] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1, 6, 445-466 (1961)
[2] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50, 10, 2061-2070 (1962)
[3] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117, 4, 500-544 (1952)
[4] Bautin, A. N., Qualitative investigation of a particular nonlinear system, Journal of Applied Mathematics and Mechanics, 39, 4, 606-615 (1975) · Zbl 0369.34013
[5] Duarte, J.; Silva, L.; Ramos, J. S., Types of bifurcations of FitzHugh-Nagumo maps, Nonlinear Dynamics, 44, 1-4, 231-242 (2006) · Zbl 1101.37321 · doi:10.1007/s11071-006-1978-5
[6] Ueta, T.; Miyazaki, H.; Kousaka, T.; Kawakami, H., Bifurcation and chaos in coupled BVP oscillators, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14, 4, 1305-1324 (2004) · Zbl 1086.37530 · doi:10.1142/S0218127404009983
[7] Ueta, T.; Kawakami, H., Bifurcation in asymmetrically coupled BVP oscillators, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 13, 5, 1319-1327 (2003) · Zbl 1064.34513 · doi:10.1142/S0218127403007199
[8] Tsuji, S.; Ueta, T.; Kawakami, H., Bifurcation analysis of current coupled BVP oscillators, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 17, 3, 837-850 (2007) · Zbl 1141.37345 · doi:10.1142/S0218127407017586
[9] Yang, D., Self-synchronization of coupled chaotic FitzHugh-Nagumo systems with unreliable communication links, Communications in Nonlinear Science and Numerical Simulation, 18, 10, 2783-2789 (2013) · Zbl 1354.92017 · doi:10.1016/j.cnsns.2013.02.004
[10] Xu, C.; Li, P., Dynamics in a delayed neural network model of two neurons with inertial coupling, Abstract and Applied Analysis, 2012 (2012) · Zbl 1254.34118 · doi:10.1155/2012/689319
[11] Liang, J.; Chen, Z.; Song, Q., State estimation for neural networks with leakage delay and time-varying delays, Abstract and Applied Analysis, 2013 (2013) · Zbl 1288.92005 · doi:10.1155/2013/289526
[12] Burić, N.; Todorović, D., Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling, Physical Review E, 67 (2003) · doi:10.1103/PhysRevE.67.066222
[13] Buric, N.; Todorovic, D., Bifurcations due to small time-lag in coupled excitable systems, International Journal of Bifurcation and Chaos, 15, 5, 1775-1785 (2005) · Zbl 1092.37538 · doi:10.1142/S0218127405012831
[14] Burić, N.; Grozdanović, I.; Vasović, N., Type I vs. type II excitable systems with delayed coupling, Chaos, Solitons & Fractals, 23, 4, 1221-1233 (2005) · Zbl 1100.34060 · doi:10.1016/j.chaos.2004.06.033
[15] Wang, Q.; Lu, Q.; Chen, G.; feng, Z.; Duan, L., Bifurcation and synchronization of synaptically coupled FHN models with time delay, Chaos, Solitons and Fractals, 39, 2, 918-925 (2009) · doi:10.1016/j.chaos.2007.01.061
[16] Fan, D.; Hong, L., Hopf bifurcation analysis in a synaptically coupled FHN neuron model with delays, Communications in Nonlinear Science and Numerical Simulation, 15, 7, 1873-1886 (2010) · Zbl 1222.37097 · doi:10.1016/j.cnsns.2009.07.025
[17] Zhen, B.; Xu, J., Simple zero singularity analysis in a coupled FitzHugh-Nagumo neural system with delay, Neurocomputing, 73, 4-6, 874-882 (2010) · doi:10.1016/j.neucom.2009.09.015
[18] Zhen, B.; Xu, J., Bautin bifurcation analysis for synchronous solution of a coupled FHN neural system with delay, Communications in Nonlinear Science and Numerical Simulation, 15, 2, 442-458 (2010) · Zbl 1221.34188 · doi:10.1016/j.cnsns.2009.04.006
[19] Lin, Y., Periodic oscillation analysis for a coupled {FHN} network model with delays, Abstract and Applied Analysis, 2013 (2013) · Zbl 1359.34064 · doi:10.1155/2013/276972
[20] Li, Y.; Jiang, W., Hopf and Bogdanov-Takens bifurcations in a coupled FitzHugh-Nagumo neural system with delay, Nonlinear Dynamics, 65, 1-2, 161-173 (2011) · Zbl 1250.34053 · doi:10.1007/s11071-010-9881-5
[21] Yang, C. D.; Qiu, J.; Wang, J. W., Robust \(H_\infty\) control for a class of nonlinear distributed parameter systems via proportional-spatial derivative control approach, Abstract and Applied Analysis, 2014 (2014) · Zbl 1406.93113 · doi:10.1155/2014/631071
[22] Song, Z. G.; Xu, J., Codimension-two bursting analysis in the delayed neural system with external stimulations, Nonlinear Dynamics, 67, 1, 309-328 (2012) · Zbl 1242.92014 · doi:10.1007/s11071-011-9979-4
[23] Song, Z. G.; Xu, J., Bursting near bautin bifurcation in a neural network with delay coupling, International Journal of Neural Systems, 19, 5, 359-373 (2009) · doi:10.1142/S0129065709002087
[24] Song, Z.-G.; Xu, J., Stability switches and multistability coexistence in a delay-coupled neural oscillators system, Journal of Theoretical Biology, 313, 21, 98-114 (2012) · Zbl 1337.92032 · doi:10.1016/j.jtbi.2012.08.011
[25] Song, Z.; Xu, J., Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays, Cognitive Neurodynamics, 7, 6, 505-521 (2013) · doi:10.1007/s11571-013-9254-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.