×

Magnetic field and gravity effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel. (English) Zbl 1474.76098

Summary: In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
92C35 Physiological flow
76Z05 Physiological flows

References:

[1] Pandey, S. K.; Chaube, M. K., Peristaltic flow of a micropolar fluid through a porous medium in the presence of an external magnetic field, Communications in Nonlinear Science and Numerical Simulation, 16, 9, 3591-3601 (2011) · Zbl 1419.76032 · doi:10.1016/j.cnsns.2011.01.003
[2] Wang, Y.; Ali, N.; Hayat, T.; Oberlack, M., Peristaltic motion of a magnetohydrodynamic micropolar fluid in a tube, Applied Mathematical Modelling, 35, 8, 3737-3750 (2011) · Zbl 1221.76252 · doi:10.1016/j.apm.2011.02.030
[3] Nadeem, S.; Akram, S., Peristaltic flow of a Williamson fluid in an asymmetric channel, Communications in Nonlinear Science and Numerical Simulation, 15, 7, 1705-1716 (2010) · Zbl 1222.76010 · doi:10.1016/j.cnsns.2009.07.026
[4] Vajravelu, K.; Sreenadh, S.; Lakshminarayana, P., The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum, Communications in Nonlinear Science and Numerical Simulation, 16, 8, 3107-3125 (2011) · Zbl 1343.76073 · doi:10.1016/j.cnsns.2010.11.001
[5] Hayat, T.; Javed, M.; Hendi, A. A., Peristaltic transport of viscous fluid in a curved channel with compliant walls, International Journal of Heat and Mass Transfer, 54, 7-8, 1615-1621 (2011) · Zbl 1211.80014 · doi:10.1016/j.ijheatmasstransfer.2010.11.022
[6] Bhargava, R.; Bég, O. A.; Sharma, S.; Zueco, J., Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow, Communications in Nonlinear Science and Numerical Simulation, 15, 5, 1210-1223 (2010) · Zbl 1221.76217 · doi:10.1016/j.cnsns.2009.05.049
[7] Ali, N.; Hayat, T.; Asghar, S., Peristaltic flow of a Maxwell fluid in a channel with compliant walls, Chaos, Solitons and Fractals, 39, 1, 407-416 (2009) · Zbl 1197.76017 · doi:10.1016/j.chaos.2007.04.010
[8] Abd-Alla, A. M.; Abo-Dahaba, S. M.; El-Shahrany, H. D., Effects of rotation and magnetic field on nonlinear peristaltic flow of second-order fluid in an asymmetric channel through a porous medium, Chinese Physics B, 22, 325-352 (2013)
[9] Hayat, T.; Saleem, N.; Ali, N., Effect of induced magnetic field on peristaltic transport of a Carreau fluid, Communications in Nonlinear Science and Numerical Simulation, 15, 9, 2407-2423 (2010) · Zbl 1222.76109 · doi:10.1016/j.cnsns.2009.09.032
[10] Pandey, S. K.; Chaube, M. K.; Tripathi, D., Peristaltic transport of multilayered power-law fluids with distinct viscosities: a mathematical model for intestinal flows, Journal of Theoretical Biology, 278, 11-19 (2011) · Zbl 1307.92061 · doi:10.1016/j.jtbi.2011.02.027
[11] Jiménez-Lozano, J.; Sen, M., Streamline topologies of two-dimensional peristaltic flow and their bifurcations, Chemical Engineering and Processing: Process Intensification, 49, 7, 704-715 (2010) · doi:10.1016/j.cep.2009.10.005
[12] Hayat, T.; Saleem, N.; Asghar, S.; Shabab Alhothuali, M.; Alhomaidan, A., Influence of induced magnetic field and heat transfer on peristaltic transport of a Carreau fluid, Communications in Nonlinear Science and Numerical Simulation, 16, 9, 3559-3577 (2011) · Zbl 1419.76706 · doi:10.1016/j.cnsns.2010.12.038
[13] Srinivas, S.; Kothandapani, M., The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls, Applied Mathematics and Computation, 213, 1, 197-208 (2009) · Zbl 1165.76052 · doi:10.1016/j.amc.2009.02.054
[14] Gad, N. S., Effect of Hall currents on interaction of pulsatile and peristaltic transport induced flows of a particle-fluid suspension, Applied Mathematics and Computation, 217, 9, 4313-4320 (2011) · Zbl 1418.76056 · doi:10.1016/j.amc.2010.08.016
[15] Abd-Alla, A. M.; Abo-Dahaba, S. M.; El-Semiry, R. D., Long wavelength peristaltic flow in a tubes with an endoscope subjected to magnetic field, Korea-Australia Rheology Journal, 25, 2, 107-118 (2013) · doi:10.1007/s13367-013-0011-z
[16] Hayat, T.; Noreen, S., Peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field, Comptes Rendus Mécanique, 338, 9, 518-528 (2010) · Zbl 1419.76028 · doi:10.1016/j.crme.2010.06.004
[17] Nadeem, S.; Akbar, N. S., Influence of radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer, Journal of the Taiwan Institute of Chemical Engineers, 41, 3, 286-294 (2010) · doi:10.1016/j.jtice.2009.11.004
[18] Nadeem, S.; Akbar, N. S., Influence of heat transfer on a peristaltic flow of Johnson Segalman fluid in a non uniform tube, International Communications in Heat and Mass Transfer, 36, 10, 1050-1059 (2009) · doi:10.1016/j.icheatmasstransfer.2009.07.012
[19] Nadeem, S.; Hayat, T.; Akbar, N. S.; Malik, M. Y., On the influence of heat transfer in peristalsis with variable viscosity, International Journal of Heat and Mass Transfer, 52, 21-22, 4722-4730 (2009) · Zbl 1176.80030 · doi:10.1016/j.ijheatmasstransfer.2009.04.037
[20] Srinivas, S.; Gayathri, R.; Kothandapani, M., The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport, Computer Physics Communications, 180, 11, 2115-2122 (2009) · Zbl 1197.76157 · doi:10.1016/j.cpc.2009.06.015
[21] Abd-Alla, A. M.; Yahya, G. A.; Mahmoud, S. R.; Alosaimi, H. S., Effect of the rotation, magnetic field and initial stress on peristaltic motion of micropolar fluid, Meccanica, 47, 6, 1455-1465 (2012) · Zbl 1293.76163 · doi:10.1007/s11012-011-9528-8
[22] Mahmoud, S. R.; Abd-Alla, A. M.; El-Sheikh, M. A., Effect of the rotation on wave motion through cylindrical bore in a micropolar porous medium, International Journal of Modern Physics B, 25, 20, 2713-2728 (2011) · Zbl 1333.74048 · doi:10.1142/S0217979211101739
[23] Abd-Alla, A. M.; Abo-Dahab, S. M.; Mahmoud, S. R., Wave propagation modeling in cylindrical human long wet bones with cavity, Meccanica, 46, 6, 1413-1428 (2011) · Zbl 1271.74312 · doi:10.1007/s11012-010-9398-5
[24] Akram, S.; Nadeem, S., Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: closed form solutions, Journal of Magnetism and Magnetic Materials, 328, 11-20 (2013) · doi:10.1016/j.jmmm.2012.09.052
[25] Rathod, V. P.; Mahadev, M., Peristaltic flow of Jeffrey fluid with slip effects in an inclined channel, Journal of Chemical, Biological and Physical Sciences, 2, 4, 1987-1997 (2012)
[26] Reddy, S. N.; Reddy, G. V., Slip effects on the peristaltic pumping of a Jeffrey fluid through a porous medium in inclined asymmetric chanel, International Journal of Mathematical Archive, 4, 4, 183-196 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.