Baleanu, Dumitru; Nazemi, Sayyedeh Zahra; Rezapour, Shahram The existence of solution for a \(k\)-dimensional system of multiterm fractional integrodifferential equations with antiperiodic boundary value problems. (English) Zbl 1474.34535 Abstr. Appl. Anal. 2014, Article ID 896871, 13 p. (2014). Summary: There are many published papers about fractional integrodifferential equations and system of fractional differential equations. The goal of this paper is to show that we can investigate more complicated ones by using an appropriate basic theory. In this way, we prove the existence and uniqueness of solution for a \(k\)-dimensional system of multiterm fractional integrodifferential equations with antiperiodic boundary conditions by applying some standard fixed point results. An illustrative example is also presented. Cited in 6 Documents MSC: 34K37 Functional-differential equations with fractional derivatives 34K10 Boundary value problems for functional-differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Agarwal, R. P.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Advances in Difference Equations, 2009 (2009) · Zbl 1182.34103 · doi:10.1155/2009/981728 [2] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109, 3, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6 [3] Agarwal, R. P.; Ahmad, B., Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Computers & Mathematics with Applications, 62, 3, 1200-1214 (2011) · Zbl 1228.34009 · doi:10.1016/j.camwa.2011.03.001 [4] Ahmad, B.; Nieto, J. J., Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topological Methods in Nonlinear Analysis, 35, 2, 295-304 (2010) · Zbl 1245.34008 [5] Ahmad, B., Existence of solutions for fractional differential equations of order q \(∈\) (2,3] with anti-periodic boundary conditions, Journal of Applied Mathematics and Computing, 34, 1-2, 385-391 (2010) · Zbl 1216.34003 · doi:10.1007/s12190-009-0328-4 [6] Ahmad, B.; Nieto, J. J., Anti-periodic fractional boundary value problems, Computers & Mathematics with Applications, 62, 3, 1150-1156 (2011) · Zbl 1228.34010 · doi:10.1016/j.camwa.2011.02.034 [7] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Computers & Mathematics with Applications, 58, 9, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091 [8] Ahmad, B.; Sivasundaram, S., On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Applied Mathematics and Computation, 217, 2, 480-487 (2010) · Zbl 1207.45014 · doi:10.1016/j.amc.2010.05.080 [9] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, Journal of Mathematical Analysis and Applications, 311, 2, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052 [10] Baleanu, D.; Agarwal, R. P.; Mohammadi, H.; Rezapour, Sh., Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Boundary Value Problems, 2013, article 112 (2013) · Zbl 1301.34007 · doi:10.1186/1687-2770-2013-112 [11] Baleanu, D.; Mohammadi, H.; Rezapour, Sh., Positive solutions of an initial value problem for nonlinear fractional differential equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.35215 · doi:10.1155/2012/837437 [12] Baleanu, D.; Rezapour, Sh.; Mohammadi, H., Some existence results on nonlinear fractional differential equations, Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 371, 1990 (2013) · Zbl 1342.34009 · doi:10.1098/rsta.2012.0144 [13] Baleanu, D.; Mohammadi, H.; Rezapour, Sh., On a nonlinear fractional differential equation on partially ordered metric spaces, Advances in Difference Equations, 2013, article 83 (2013) · Zbl 1380.34007 · doi:10.1186/1687-1847-2013-83 [14] Baleanu, D.; Mohammadi, H.; Rezapour, Sh., The existence of solutions for a nonlinear mixed problem of singular fractional differential equations, Advances in Difference Equations, 2013, article 359 (2013) · Zbl 1347.34008 [15] Baleanu, D.; Nazemi, S. Z.; Rezapour, Sh., The existence of positive solutions for a new coupled system of multiterm singular fractional integrodifferential boundary value problems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1294.45005 · doi:10.1155/2013/368659 [16] Baleanu, D.; Nazemi, S. Z.; Rezapour, Sh., Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations, Advances in Difference Equations, 2013, article 368 (2013) · Zbl 1347.34010 [17] Baleanu, D.; Nazemi, S. Z.; Rezapour, Sh., Attractivity for a \(k\)-dimensional system of fractional functional differential equations and global attractivity for a \(k\)-dimensional system of nonlinear fractional differential equations, Journal of Inequalities and Applications, 4014, article 31 (2014) · Zbl 1314.34156 [18] Benchohra, M.; Hamani, S.; Ntouyas, S. K., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2391-2396 (2009) · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073 [19] Darwish, M. A.; Ntouyas, S. K., On initial and boundary value problems for fractional order mixed type functional differential inclusions, Computers & Mathematics with Applications, 59, 3, 1253-1265 (2010) · Zbl 1189.34029 · doi:10.1016/j.camwa.2009.05.006 [20] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, xvi+523 (2006), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands · Zbl 1092.45003 [21] Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 69, 8, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042 [22] Momani, S. M., Some existence theorems on fractional integro-differential equations, Abhath Al-Yarmouk Journal, 10, 435-444 (2001) [23] Momani, S. M.; El-Khazali, R., On the existence of extremal solutions of fractional integro-differential equations, Journal of Fractional Calculus, 18, 87-92 (2000) · Zbl 0967.45005 [24] Ntouyas, S. K.; Obaid, M., A coupled system of fractional differential equations with nonlocal integral boundary conditions, Advances in Difference Equations, 2012, article 130 (2012) · Zbl 1350.34010 · doi:10.1186/1687-1847-2012-130 [25] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198, xxiv+340 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008 [26] Sabatier, J.; Agrawal, O. P.; Machado, J. A. T., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, xiv+552 (2007), Dordrecht, The Netherlands: Springer, Dordrecht, The Netherlands · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7 [27] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, xxxvi+976 (1993), Yverdon, Switzerland: Gordon and Breach Science Publishers, Yverdon, Switzerland · Zbl 0818.26003 [28] Su, X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Applied Mathematics Letters, 22, 1, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001 [29] Sun, J.; Liu, Y.; Liu, G., Existence of solutions for fractional differential systems with antiperiodic boundary conditions, Computers & Mathematics with Applications, 64, 6, 1557-1566 (2012) · Zbl 1268.34157 · doi:10.1016/j.camwa.2011.12.083 [30] Wang, X.; Guo, X.; Tang, G., Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order, Journal of Applied Mathematics and Computing, 41, 1-2, 367-375 (2013) · Zbl 1300.34023 · doi:10.1007/s12190-012-0613-5 [31] Yang, X., Local Fractional Functional Analysis and Its Applications (2011), Hong Kong: Asian Academic Publisher, Hong Kong [32] Yuan, C., Two positive solutions for \((n - 1, 1)\)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations, Communications in Nonlinear Science and Numerical Simulation, 17, 2, 930-942 (2012) · Zbl 1248.35225 · doi:10.1016/j.cnsns.2011.06.008 [33] Zhong, W.; Yang, X.; Gao, F., A Cauchy problem for some local fractional abstract differential equation with fractal conditions, Journal of Applied Functional Analysis, 8, 1, 92-99 (2013) · Zbl 1279.26022 [34] Smart, D. R., Fixed Point Theorems (1980), Cambridge, Mass, USA: Cambridge University Press, Cambridge, Mass, USA · Zbl 0427.47036 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.