Chatzarakis, G. E.; Péics, H.; Stavroulakis, I. P. Oscillations in difference equations with deviating arguments and variable coefficients. (English) Zbl 1474.39021 Abstr. Appl. Anal. 2014, Article ID 902616, 9 p. (2014). Summary: New sufficient conditions for the oscillation of all solutions of difference equations with several deviating arguments and variable coefficients are presented. Examples illustrating the results are also given. Cited in 2 Documents MSC: 39A21 Oscillation theory for difference equations PDF BibTeX XML Cite \textit{G. E. Chatzarakis} et al., Abstr. Appl. Anal. 2014, Article ID 902616, 9 p. (2014; Zbl 1474.39021) Full Text: DOI References: [1] Fukagai, N.; Kusano, T., Oscillation theory of first order functional-differential equations with deviating arguments, Annali di Matematica Pura ed Applicata. Serie Quarta, 136, 95-117 (1984) · Zbl 0552.34062 [2] Ladas, G.; Stavroulakis, I. P., Oscillations caused by several retarded and advanced arguments, Journal of Differential Equations, 44, 1, 134-152 (1982) · Zbl 0452.34058 [3] Li, B., Oscillation of first order delay differential equations, Proceedings of the American Mathematical Society, 124, 12, 3729-3737 (1996) · Zbl 0865.34057 [4] Arino, O.; Györi, I.; Jawhari, A., Oscillation criteria in delay equations, Journal of Differential Equations, 53, 1, 115-123 (1984) · Zbl 0547.34060 [5] Berezansky, L.; Braverman, E., On existence of positive solutions for linear difference equations with several delays, Advances in Dynamical Systems and Applications, 1, 1, 29-47 (2006) · Zbl 1124.39002 [6] Berezansky, L.; Braverman, E., Positive solutions for a scalar differential equation with several delays, Applied Mathematics Letters, 21, 6, 636-640 (2008) · Zbl 1146.34325 [7] Chatzarakis, G. E.; Kusano, T.; Stavroulakis, I. P., Oscillation conditions for difference equations with several variable · Zbl 1363.39014 [8] Chatzarakis, G. E.; Manojlovic, J.; Pinelas, S.; Stavroulakis, I. P., Oscillation criteria of difference equations with several deviating arguments · Zbl 1318.39011 [9] Chatzarakis, G. E.; Pinelas, S.; Stavroulakis, I. P., Oscillations of difference equations with several deviated arguments · Zbl 1306.39007 [10] Grammatikopoulos, M. K.; Koplatadze, R.; Stavroulakis, I. P., On the oscillation of solutions of first order differential equations with retarded arguments, Georgian Mathematical Journal, 10, 1, 63-76 (2003) · Zbl 1051.34051 [11] Hunt, B. R.; Yorke, J. A., When all solutions of \(x' = \sum_{j = 1}^n q_j \left(t\right) x \left(t - T_j \left(t\right)\right)\) oscillate, Journal of Differential Equations, 53, 2, 139-145 (1984) · Zbl 0571.34057 [12] Jaroš, J.; Stavroulakis, I. P., Necessary and sufficient conditions for oscillations of difference equations with several delays, Utilitas Mathematica, 45, 187-195 (1994) · Zbl 0808.39004 [13] Luo, X. N.; Zhou, Y.; Li, C. F., Oscillation of a nonlinear difference equation with several delays, Mathematica Bohemica, 128, 3, 309-317 (2003) · Zbl 1055.39015 [14] Tang, X. H.; Zhang, R. Y., New oscillation criteria for delay difference equations, Computers & Mathematics with Applications, 42, 10-11, 1319-1330 (2001) · Zbl 1002.39022 [15] Berezansky, L.; Chatzarakis, G. E.; Domoshnitsky, A.; Stavroulakis, I. P., Oscillations of difference equations with several oscillating coefficients, Abstract and Applied Analysis, 2014 (2014) · Zbl 1473.39014 [16] Bohner, M.; Chatzarakis, G. E.; Stavroulakis, I. P., Qualitative behavior of solutions of difference equations with several oscillating coefficients, Arabian Journal of Mathematics, 3, 1, 1-13 (2014) · Zbl 1317.39017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.