×

MHD natural convection with convective surface boundary condition over a flat plate. (English) Zbl 1474.76105

Summary: We apply the one parameter continuous group method to investigate similarity solutions of magnetohydrodynamic (MHD) heat and mass transfer flow of a steady viscous incompressible fluid over a flat plate. By using the one parameter group method, similarity transformations and corresponding similarity representations are presented. A convective boundary condition is applied instead of the usual boundary conditions of constant surface temperature or constant heat flux. In addition it is assumed that viscosity, thermal conductivity, and concentration diffusivity vary linearly. Our study indicates that a similarity solution is possible if the convective heat transfer related to the hot fluid on the lower surface of the plate is directly proportional to \((\overline{x})^{-1/2}\) where \(\overline{x}\) is the distance from the leading edge of the solid surface. Numerical solutions of the ordinary differential equations are obtained by the Keller Box method for different values of the controlling parameters associated with the problem.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76R10 Free convection
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rashidi, M. M.; Hayat, T.; Parsa, A. B., Solving of boundary-layer equations with transpiration effects, governance on a vertical permeable cylinder using modified differential transform method, Heat Transfer—Asian Research, 40, 8, 677-692 (2011) · doi:10.1002/htj.20366
[2] Turkyilmazoglu, M., MHD fluid flow and heat transfer due to a shrinking rotating disk, Computers & Fluids, 90, 51-56 (2014) · Zbl 1391.76862 · doi:10.1016/j.compfluid.2013.11.005
[3] Zhang, J.; Ni, M.-J., A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured Cartesian adaptive system, Journal of Computational Physics, 256, 520-542 (2014) · Zbl 1349.76411 · doi:10.1016/j.jcp.2013.08.004
[4] Rashidi, M. M.; Erfani, E., Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating, Engineering Computations, 29, 6, 562-579 (2012) · doi:10.1108/02644401211246283
[5] Mukhopadhyay, S.; Layek, G. C.; Samad, Sk. A., Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity, International Journal of Heat and Mass Transfer, 48, 21-22, 4460-4466 (2005) · Zbl 1189.76787 · doi:10.1016/j.ijheatmasstransfer.2005.05.027
[6] Andersson, H. I., MHD flow of a viscoelastic fluid past a stretching surface, Acta Mechanica, 95, 1-4, 227-230 (1992) · Zbl 0753.76192 · doi:10.1007/BF01170814
[7] Rashidi, M. M.; Laraqi, N.; Parsa, A. B., Analytical modeling of heat convection in magnetized micropolar fluid by using modified differential transform method, Heat Transfer—Asian Research, 40, 3, 187-204 (2011) · doi:10.1002/htj.20337
[8] Parsa, A. B.; Rashidi, M. M.; Hayat, T., MHD boundary-layer flow over a stretching surface with internal heat generation or absorption, Heat Transfer—Asian Research, 42, 6, 500-514 (2013) · doi:10.1002/htj.21054
[9] Watanabe, T.; Pop, I., Magnetohydrodynamic free convection flow over a wedge in the presence of a transverse magnetic field, International Communications in Heat and Mass Transfer, 20, 6, 871-881 (1993)
[10] Kumari, M.; Nath, G., Analytical solution of unsteady three-dimensional MHD boundary layer flow and heat transfer due to impulsively stretched plane surface, Communications in Nonlinear Science and Numerical Simulation, 14, 8, 3339-3350 (2009) · Zbl 1221.76226 · doi:10.1016/j.cnsns.2008.11.011
[11] Moreau, R., Magnetohydrodynamics (1990), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 0714.76003
[12] Makinde, O. D., Thermal stability of a reactive viscous flow through a porous-saturated channel with convective boundary conditions, Applied Thermal Engineering, 29, 8-9, 1773-1777 (2009) · doi:10.1016/j.applthermaleng.2008.08.012
[13] Makinde, O. D.; Sibanda, P., Magnetohydrodynamic mixed-convective flow and heat and mass transfer past a vertical plate in a porous medium with constant wall suction, ASME Journal of Heat Transfer, 130, 11, 1-8 (2008) · doi:10.1115/1.2955471
[14] Makinde, O. D.; Ogulu, A., The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field, Chemical Engineering Communications, 195, 12, 1575-1584 (2008) · doi:10.1080/00986440802115549
[15] Rajeswari, R.; Jothiram, B.; Nelson, V. K., Chemical reaction, heat and mass transfer on nonlinear MHD boundary layer flow through a vertical porous surface in the presence of suction, Applied Mathematical Sciences, 3, 49-52, 2469-2480 (2009) · Zbl 1184.76912
[16] Chen, T.-M., Radiation effects on magnetohydrodynamic free convection flow, Journal of Thermophysics and Heat Transfer, 22, 1, 125-128 (2008) · doi:10.2514/1.33027
[17] Ishak, A., Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition, Applied Mathematics and Computation, 217, 2, 837-842 (2010) · Zbl 1432.76090 · doi:10.1016/j.amc.2010.06.026
[18] Makinde, O. D., Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition, International Journal of Physical Sciences, 5, 6, 700-710 (2010)
[19] Rashidi, M. M.; Ali, M.; Freidoonimehr, N.; Nazari, F., Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm, Energy, 55, 497-510 (2013) · doi:10.1016/j.energy.2013.01.036
[20] Kays, W. M.; Crawford, M. E.; Weigand, B., Convective Heat and Mass Transfer (2005), Boston, Mass, USA: McGraw-Hill, Boston, Mass, USA
[21] White, F. M., Viscous Fluid Flow (1991), Boston, Mass, USA: McGraw-Hill, Boston, Mass, USA
[22] Seddeek, M. A.; Salem, A. M., Laminar mixed convection adjacent to vertical continuously stretching sheets with variable viscosity and variable thermal diffusivity, Heat and Mass Transfer, 41, 12, 1048-1055 (2005) · doi:10.1007/s00231-005-0629-6
[23] Hamad, M. A. A.; Uddin, Md. J.; Ismail, A. I. Md., Investigation of combined heat and mass transfer by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal convective boundary conditions, International Journal of Heat and Mass Transfer, 55, 4, 1355-1362 (2012) · Zbl 1262.80019 · doi:10.1016/j.ijheatmasstransfer.2011.08.043
[24] Kandasamy, R.; Muhaimin, I.; Bin Saim, H., Lie group analysis for the effect of temperature-dependent fluid viscosity with thermophoresis and chemical reaction on MHD free convective heat and mass transfer over a porous stretching surface in the presence of heat source/sink, Communications in Nonlinear Science and Numerical Simulation, 15, 8, 2109-2123 (2010) · Zbl 1222.76110 · doi:10.1016/j.cnsns.2009.09.016
[25] Cebeci, T.; Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer (1984), New York, NY, USA: Springer, New York, NY, USA · Zbl 0545.76090
[26] Na, T. Y., Computational Methods in Engineering Boundary Value Problem (1979), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0456.76002
[27] Keller, H. B., Numerical methods in boundary-layer theory, Annual Review of Fluid Mechanics, 10, 417-433 (1978) · Zbl 0403.76042 · doi:10.1146/annurev.fl.10.010178.002221
[28] Keller, H. B.; Hubbard, B., A new difference scheme for parabolic problems, Numerical Solution of Partial Differential Equations II, 327-350 (1971), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0243.65060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.