Zhu, Liping; Zhang, Zhengce Non-self-similar dead-core rate for the fast diffusion equation with dependent coefficient. (English) Zbl 1474.35411 Abstr. Appl. Anal. 2014, Article ID 927631, 5 p. (2014). Summary: We consider the dead-core problem for the fast diffusion equation with spatially dependent coefficient and show that the temporal dead-core rate is non-self-similar. The proof is based on the standard compactness arguments with the uniqueness of the self-similar solutions and the precise estimates on the single-point final dead-core profile. MSC: 35K59 Quasilinear parabolic equations 35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness 35B44 Blow-up in context of PDEs 35C06 Self-similar solutions to PDEs PDF BibTeX XML Cite \textit{L. Zhu} and \textit{Z. Zhang}, Abstr. Appl. Anal. 2014, Article ID 927631, 5 p. (2014; Zbl 1474.35411) Full Text: DOI References: [1] Zhang, Z. C.; Wang, B., Spatial profile of the dead core for the fast diffusion equation with dependent coefficient, International Journal of Differential Equations, 2011 (2011) · Zbl 1241.35030 [2] Bandle, C.; Nanbu, T.; Stakgold, I., Porous medium equation with absorption, SIAM Journal on Mathematical Analysis, 29, 5, 1268-1278 (1998) · Zbl 0935.35083 [3] Bandle, C.; Stakgold, I., The formation of the dead core in parabolic reaction-diffusion problems, Transactions of the American Mathematical Society, 286, 1, 275-293 (1984) · Zbl 0519.35042 [4] Wang, L.; Chen, Q., On the dead core behavior for a semilinear heat equation, Mathematica Applicata, 10, 1, 22-25 (1997) · Zbl 0934.35075 [5] Chen, X.; Guo, J.-S.; Hu, B., Dead-core rates for the porous medium equation with a strong absorption, Discrete and Continuous Dynamical Systems B. A Journal Bridging Mathematics and Sciences, 17, 6, 1761-1774 (2012) · Zbl 1250.35128 [6] Guo, J.-S.; Ling, C.-T.; Souplet, P., Non-self-similar dead-core rate for the fast diffusion equation with strong absorption, Nonlinearity, 23, 3, 657-673 (2010) · Zbl 1194.35059 [7] Guo, J.-S.; Souplet, P., Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up, Mathematische Annalen, 331, 3, 651-667 (2005) · Zbl 1063.35087 [8] Guo, J.-S.; Wu, C.-C., Finite time dead-core rate for the heat equation with a strong absorption, The Tohoku Mathematical Journal, 60, 1, 37-70 (2008) · Zbl 1157.35059 [9] Stakgold, I., Reaction-diffusion problems in chemical engineering, Nonlinear Diffusion Problems. Nonlinear Diffusion Problems, Lecture Notes in Mathematics, 1224, 119-152 (1986), Berlin, Germany: Springer, Berlin, Germany [10] Guo, J.-S.; Matano, H.; Wu, C.-C., An application of braid group theory to the finite time dead-core rate, Journal of Evolution Equations, 10, 4, 835-855 (2010) · Zbl 1239.35085 [11] Herrero, M. A.; Velázquez, J. J. L., Explosion de solutions d’équations paraboliques semilinéaires supercritiques, Comptes Rendus de l’Académie des Sciences I. Mathématique, 319, 2, 141-145 (1994) · Zbl 0806.35005 [12] Mizoguchi, N., Blow-up rate of type II and the braid group theory, Transactions of the American Mathematical Society, 363, 3, 1419-1443 (2011) · Zbl 1228.35069 [13] Guo, J.-S.; Hu, B., Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete and Continuous Dynamical Systems A, 20, 4, 927-937 (2008) · Zbl 1159.35009 [14] Zhang, Z. C., Gradient blowup rate for a viscous Hamilton-Jacobi equation with degenerate diffusion, Archiv der Mathematik, 100, 4, 361-367 (2013) · Zbl 1264.35060 [15] Zhang, Z.-C.; Hu, B., Boundary gradient blowup in a semilinear parabolic equation, Discrete and Continuous Dynamical Systems A, 26, 2, 767-779 (2010) · Zbl 1191.35074 [16] Zhang, Z. C.; Hu, B., Rate estimates of gradient blowup for a heat equation with exponential nonlinearity, Nonlinear Analysis. Theory, Methods & Applications, 72, 12, 4594-4601 (2010) · Zbl 1189.35033 [17] Zhang, Z. C.; Li, Y., Blowup and existence of global solutions to nonlinear parabolic equations with degenerate diffusion, Electronic Journal of Differential Equations, 2013, 264 (2013) [18] Zhang, Z. C.; Li, Y. Y., Boundedness of global solutions for a heat equation with exponential gradient source, Abstract and Applied Analysis, 2012 (2012) · Zbl 1254.35122 [19] Zhang, Z. C.; Li, Y. Y., Gradient blowup solutions of a semilinear parabolic equation with exponential source, Communications on Pure and Applied Analysis, 12, 1, 269-280 (2013) · Zbl 1264.35061 [20] Zhang, Z. C.; Li, Z. J., A note on gradient blowup rate of the inhomogeneous Hamilton-Jacobi equations, Acta Mathematica Scientia, 33, 3, 678-686 (2013) · Zbl 1299.35050 [21] Zhu, L. P.; Zhang, Z. C., Rate of approach to the steady state for a diffusion-convection equation on annular domains, Electronic Journal of Qualitative Theory of Differential Equations, 39, 2 (2012) [22] Floater, M. S., Blow-up at the boundary for degenerate semilinear parabolic equations, Archive for Rational Mechanics and Analysis, 114, 1, 57-77 (1991) · Zbl 0733.35009 [23] Lacey, A. A., The form of blow-up for nonlinear parabolic equations, Proceedings of the Royal Society of Edinburgh A. Mathematics, 98, 1-2, 183-202 (1984) · Zbl 0556.35077 [24] Wang, C. P.; Zheng, S. N., Critical Fujita exponents of degenerate and singular parabolic equations, Proceedings of the Royal Society of Edinburgh A. Mathematics, 136, 2, 415-430 (2006) · Zbl 1104.35015 [25] Wu, C.-C.; Zhang, Z. C., Dead-core rates for the heat equation with a spatially dependent strong absorption, Discrete and Continuous Dynamical Systems B. A Journal Bridging Mathematics and Sciences, 18, 8, 2203-2210 (2013) · Zbl 1284.35080 [26] Guo, J.-S.; Lin, C.-S.; Shimojo, M., Blow-up for a reaction-diffusion equation with variable coefficient, Applied Mathematics Letters, 26, 1, 150-153 (2013) · Zbl 1254.35029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.