×

The invertibility, explicit determinants, and inverses of circulant and left circulant and \(g\)-circulant matrices involving any continuous Fibonacci and Lucas numbers. (English) Zbl 1474.15081

Summary: Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and \(g\)-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and \(g\)-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and \(g\)-circulant matrices by utilizing the relationship between left circulant, \(g\)-circulant matrices and circulant matrix, respectively.

MSC:

15B36 Matrices of integers

References:

[1] Bertaccini, D., A circulant preconditioner for the systems of LMF-based ODE codes, SIAM Journal on Scientific Computing, 22, 3, 767-786 (2000) · Zbl 0976.65071 · doi:10.1137/S1064827599353476
[2] Saad, Y., Iterative Methods for Sparse Linear Systems (1996), Boston, Mass, USA: PWS Publishing Company, Boston, Mass, USA · Zbl 1002.65042
[3] Delgado, J.; Romero, N.; Rovella, A.; Vilamajó, F., Bounded solutions of quadratic circulant difference equations, Journal of Difference Equations and Applications, 11, 10, 897-907 (2005) · Zbl 1097.37011 · doi:10.1080/10236190500138312
[4] Chan, R. H.; Ng, M. K., Conjugate gradient methods for Toeplitz systems, SIAM Review, 38, 3, 427-482 (1996) · Zbl 0863.65013 · doi:10.1137/S0036144594276474
[5] Jin, X. Q., Developments and Applications of Block Toeplitz Iterative Solvers (2002), Dodrecht, The Netherlands: Kluwer Academic, Dodrecht, The Netherlands
[6] Chan, R. H.; Ng, M. K.; Jin, X. Q., Strang-type preconditioners for systems of LMF-based ODE codes, IMA Journal of Numerical Analysis, 21, 2, 451-462 (2001) · Zbl 0990.65076 · doi:10.1093/imanum/21.2.451
[7] Nussbaum, R. D., Circulant matrices and differential-delay equations, Journal of Differential Equations, 60, 2, 201-217 (1985) · Zbl 0622.34076 · doi:10.1016/0022-0396(85)90113-5
[8] Bai, Z. J.; Jin, X. Q.; Song, L. L., Strang-type preconditioners for solving linear systems from neutral delay differential equations, Calcolo, 40, 1, 21-31 (2003) · Zbl 1168.65369 · doi:10.1007/s100920300001
[9] Chan, R. H.; Jin, X.; Tam, Y., Strang-type preconditioners for solving systems of {ODE}s by boundary value methods, Electronic Journal of Mathematical and Physical Sciences, 1, 1, 14-46 (2002) · Zbl 1002.65075
[10] Jin, X. Q.; Lei, S. L.; Wei, Y., Circulant preconditioners for solving differential equations with multidelays, Computers & Mathematics with Applications, 47, 8-9, 1429-1436 (2004) · Zbl 1072.34085 · doi:10.1016/S0898-1221(04)90135-6
[11] Lei, S. L.; Jin, X. Q.; Vulkov, L.; Wasniewski, J.; Yalamov, P., Strang-type preconditioners for solving differential-algebraic equations, Numerical Analysis and Its Applications. Numerical Analysis and Its Applications, Lecture Notes in Computer Science, 505-512 (2001), Berlin, Germany: Springer, Berlin, Germany · Zbl 0978.65071
[12] Lin, F. R.; Jin, X. Q.; Lei, S. L., Strang-type preconditioners for solving linear systems from delay differential equations, BIT Numerical Mathematics, 43, 1, 139-152 (2003) · Zbl 1029.65070 · doi:10.1023/A:1023657107334
[13] Guo, S. J.; Chen, Y. M.; Wu, J. H., Equivariant normal forms for parameterized delay differential equations with applications to bifurcation theory, Acta Mathematica Sinica, 28, 4, 825-856 (2012) · Zbl 1334.34154 · doi:10.1007/s10114-011-9718-2
[14] Cai, M.; Jin, X., BCCB preconditioners for solving linear systems from delay differential equations, Computers and Mathematics with Applications, 50, 1-2, 281-288 (2005) · Zbl 1096.34551 · doi:10.1016/j.camwa.2004.03.019
[15] Jin, X.; Lei, S.; Wei, Y., Circulant preconditioners for solving singular perturbation delay differential equations, Numerical Linear Algebra with Applications, 12, 2-3, 327-336 (2005) · Zbl 1164.65395 · doi:10.1002/nla.420
[16] Erbas, C.; Tanik, M. M., Generating solutions to the \(N\)-queens problem using 2-circulants, Mathematics Magazine, 68, 5, 343-356 (1995) · Zbl 0858.05002 · doi:10.2307/2690923
[17] Wu, Y. K.; Jia, R. Z.; Li, Q., g-Circulant solutions to the (0; 1) matrix equation \(A^m = J*_n\), Linear Algebra and Its Applications, 345, 195-224 (2002) · Zbl 0998.15015
[18] Bose, A.; Hazra, R. S.; Saha, K., Poisson convergence of eigenvalues of circulant type matrices, Extremes: Statistical Theory and Applications in Science, Engineering and Economics, 14, 4, 365-392 (2011) · Zbl 1329.60007 · doi:10.1007/s10687-010-0115-5
[19] Bose, A.; Hazra, R. S.; Saha, K., Spectral norm of circulant-type matrices, Journal of Theoretical Probability, 24, 2, 479-516 (2011) · Zbl 1241.60006 · doi:10.1007/s10959-009-0257-z
[20] Ngondiep, E.; Serra-Capizzano, S.; Sesana, D., Spectral features and asymptotic properties for \(g\)-circulants and \(g\)-Toeplitz sequences, SIAM Journal on Matrix Analysis and Applications, 31, 4, 1663-1687 (2010) · Zbl 1206.15010 · doi:10.1137/090760209
[21] Davis, P. J., Circulant Matrices (1979), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0418.15017
[22] Jiang, Z. L.; Zhou, Z. X., Circulant Matrices (1999), Chengdu, China: Chengdu Technology University Publishing Company, Chengdu, China
[23] Jaiswal, D. V., On determinants involving generalized Fibonacci numbers, The Fibonacci Quarterly, 7, 319-330 (1969) · Zbl 0191.04501
[24] Lind, D. A., A Fibonacci circulant, The Fibonacci Quarterly, 8, 5, 449-455 (1970) · Zbl 0215.06802
[25] Lin, D. Z., Fibonacci-Lucas quasi-cyclic matrices, The Fibonacci Quarterly, 40, 3, 280-286 (2002) · Zbl 1081.11011
[26] Shen, S.; Cen, J.; Hao, Y., On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Applied Mathematics and Computation, 217, 23, 9790-9797 (2011) · Zbl 1222.15010 · doi:10.1016/j.amc.2011.04.072
[27] Bozkurt, D.; Tam, T., Determinants and inverses of circula nt matrices with Jacobsthal and Jacobsthal-Lucas numbers, Applied Mathematics and Computation, 219, 2, 544-551 (2012) · Zbl 1302.15005 · doi:10.1016/j.amc.2012.06.039
[28] Karner, H.; Schneid, J.; Ueberhuber, C., Spectral decomposition of real circulant matrices, Linear Algebra and Its Applications, 367, 301-311 (2003) · Zbl 1021.15007 · doi:10.1016/S0024-3795(02)00664-X
[29] Stallings, W. T.; Boullion, T. L., The pseudoinverse of an \(r\)-circulant matrix, Proceedings of the American Mathematical Society, 34, 385-388 (1972) · Zbl 0222.15002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.