Zhao, Haixia; Qiao, Lijing; Tang, Shengqiang Peakon, cuspon, compacton, and loop solutions of a three-dimensional 3DKP\((3,2)\) equation with nonlinear dispersion. (English) Zbl 1468.35179 Abstr. Appl. Anal. 2014, Article ID 934987, 9 p. (2014). Summary: We study peakon, cuspon, compacton, and loop solutions for the three-dimensional Kadomtsev-Petviashvili equation (3DKP\((3,2)\) equation) with nonlinear dispersion. Based on the method of dynamical systems, the 3DKP\((3,2)\) equation is shown to have the parametric representations of the solitary wave solutions such as peakon, cuspon, compacton, and loop solutions. As a result, the conditions under which peakon, cuspon, compacton, and loop solutions appear are also given. MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35C08 Soliton solutions PDF BibTeX XML Cite \textit{H. Zhao} et al., Abstr. Appl. Anal. 2014, Article ID 934987, 9 p. (2014; Zbl 1468.35179) Full Text: DOI References: [1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering. Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149 (1991), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0762.35001 [2] Matveev, V. B.; Salle, M. A., Darboux Transformation and Solitons (1991), Berlin, Germany: Springer, Berlin, Germany · Zbl 0744.35045 [3] Gu, C. H.; Hu, H. S.; Zhou, Z. X., Darboux Transformations in Soliton Theory and Its Geometric Applications (1999), Shanghai, China: Shanghai Science and Technology, Shanghai, China [4] Hirota, R.; Satsuma, J., Soliton solutions of a coupled Korteweg-de Vries equation, Physics Letters A, 85, 8-9, 407-408 (1981) [5] Olver, P. J., Applications of Lie Groups to Differential Equations (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0785.58003 [6] Bluman, G. W.; Kumei, S., Symmetries and Differential Equations (1989), Berlin, Germany: Springer, Berlin, Germany · Zbl 0698.35001 [7] Li, J.; Liu, Z., Traveling wave solutions for a class of nonlinear dispersive equations, Chinese Annals of Mathematics B, 23, 3, 397-418 (2002) · Zbl 1011.35014 [8] Wei, M. Z.; Tang, S. Q.; Fu, H. L.; Chen, G. X., Single peak solitary wave solutions for the generalized KP-MEW \(( 2 , 2 )\) equation under boundary condition, Applied Mathematics and Computation, 219, 17, 8979-8990 (2013) · Zbl 1290.35234 [9] Wazwaz, A., A reliable treatment of the physical structure for the nonlinear equation \(K ( m , n )\), Applied Mathematics and Computation, 163, 3, 1081-1095 (2005) · Zbl 1072.35580 [10] Wazwaz, A.-M., Analytic study on nonlinear variants of the RLW and the PHI-four equations, Communications in Nonlinear Science and Numerical Simulation, 12, 3, 314-327 (2007) · Zbl 1109.35099 [11] Yan, Z.; Zhang, H., New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics, Physics Letters A, 252, 6, 291-296 (1999) · Zbl 0938.35130 [12] Yan, Z., New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Physics Letters A, 292, 1-2, 100-106 (2001) · Zbl 1092.35524 [13] Fan, E., Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos, Solitons and Fractals, 16, 5, 819-839 (2003) · Zbl 1030.35136 [14] Zhang, S., New exact solutions of the KdV-Burgers-Kuramoto equation, Physics Letters A, 358, 5-6, 414-420 (2006) · Zbl 1142.35592 [15] Wang, M.-L., Exact solutions for a compound KdV-Burgers equation, Physics Letters A, 213, 5-6, 279-287 (1996) · Zbl 0972.35526 [16] Xie, F.; Yan, Z.-Y., Compactons and noncompactons to three-dimensional Kadomtsev-Petviashvili equation with nonlinear dispersion, Chaos, Solitons & Fractals, 36, 2, 278-282 (2008) · Zbl 1136.35084 [17] Kuznetsov, E. A.; Turitsyn, S. K., Two-and three-dimensional solitons in weakly dispersive media, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 82, 1457-1463 (1982) [18] Kuznietsov, E. A.; Musher, S. L., Effect of collapse of sound waves on the structure of collisionless shock waves in a magnetized plasma, Journal of Experimental and Theoretical Physics, 64, 5, 947-955 (1986) [19] Rosenau, P.; Hyman, J. M., Compactons: solitons with finite wavelength, Physical Review Letters, 70, 5, 564-567 (1993) · Zbl 0952.35502 [20] Inc, M., Compact and noncompact structures of a three-dimensional 3DKP \((m,n)\) equation with nonlinear dispersion, Applied Mathematics Letters, 26, 4, 437-444 (2013) · Zbl 1260.37032 [21] Chow, S. N.; Hale, J. K., Method of Bifurcation Theory (1981), New York, NY, USA: Springer, New York, NY, USA [22] Li, J.; Liu, Z., Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Applied Mathematical Modelling, 25, 1, 41-56 (2000) · Zbl 0985.37072 [23] Xie, Y.; Fu, H.; Tang, S., Peaked and smooth solitons for \(K * ( 4 , 1 )\) equation, Journal of Applied Mathematics, 2013 (2013) · Zbl 1397.35265 [24] Fu, H.; Tang, Y.; Tang, S.; Yan, H.; Liu, Q., Peaked and smooth solitons for \(K\)*(3, 1) equation, Indian, Journal of Physics, 88, 83-91 (2014) [25] Li, J.; Qiao, Z., Peakon, pseudo-peakon, and cuspon solutions for two generalized Camassa-Holm equations, Journal of Mathematical Physics, 54, 12 (2013) · Zbl 1380.35050 [26] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Physical Review Letters, 71, 11, 1661-1664 (1993) · Zbl 0972.35521 [27] Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists (1971), Berlin, Germany: Springer, Berlin, Germany · Zbl 0213.16602 [28] Li, J. B., Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions (2013), Beijing, China: Science Press, Beijing, China [29] Li, J., Dynamical understanding of loop soliton solution for several nonlinear wave equations, Science in China. Series A. Mathematics, 50, 6, 773-785 (2007) · Zbl 1139.35076 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.