Prediction model of interval grey numbers with a real parameter and its application. (English) Zbl 1474.62339

Summary: Grey prediction models have become common methods which are widely employed to solve the problems with “small examples and poor information.” However, modeling objects of existing grey prediction models are limited to the homogenous data sequences which only contain the same data type. This paper studies the methodology of building prediction models of interval grey numbers that are grey heterogeneous data sequence, with a real parameter. Firstly, the position of the real parameter in an interval grey number sequence is discussed, and the real number is expanded into an interval grey number by adopting the method of grey generation. On this basis, a prediction model of interval grey number with a real parameter is deduced and built. Finally, this novel model is successfully applied to forecast the concentration of organic pollutant DDT in the atmosphere. The analysis and research results in this paper extend the object of grey prediction from homogenous data sequence to grey heterogeneous data sequence. Those research findings are of positive significance in terms of enriching and improving the theory system of grey prediction models.


62M99 Inference from stochastic processes
Full Text: DOI


[1] Andrew, A. M., Why the world is grey, Grey Systems: Theory and Application, 1, 2, 112-116 (2011) · doi:10.1108/20439371111163738
[2] Ju-Long, D., Control problem of grey systems, Systems & Control Letters, 1, 5, 288-294 (1982) · Zbl 0482.93003 · doi:10.1016/S0167-6911(82)80025-X
[3] Kong, Z.; Wang, L. F.; Wu, Z. X., Application of fuzzy soft set in decision making problems based on grey theory, Journal of Computational and Applied Mathematics, 236, 6, 1521-1530 (2011) · doi:10.1016/j.cam.2011.09.016
[4] Li, Q.-X.; Liu, S.-F.; Lin, Y., Grey enterprise input-output analysis, Journal of Computational and Applied Mathematics, 236, 7, 1862-1875 (2012) · Zbl 1237.93101 · doi:10.1016/j.cam.2011.10.018
[5] Liu, S. F.; Forrest, J.; Yang, Y. J., A brief introduction to grey systems theory, Grey Systems: Theory and Application, 2, 2, 89-104 (2012) · doi:10.1108/20439371211260081
[6] Zhang, H. N.; Xu, A. J.; Cui, J., Establishment of neural network prediction model for terminative temperature based on grey theory in hot metal pretreatment, Journal of Iron and Steel Research International, 19, 6, 25-29 (2012) · doi:10.1016/S1006-706X(12)60122-8
[7] Hsu, L. C., Applying the grey prediction model to the global integrated circuit industry, Technology and Social Change, 70, 6, 563-574 (2003) · doi:10.1016/S0040-1625(02)00195-6
[8] Ren, X. W.; Tang, Y. Q.; Li, J.; Yang, Q., A prediction method using grey model for cumulative plastic deformation under cyclic loads, Natural Hazards, 64, 1, 441-457 (2012) · doi:10.1007/s11069-012-0248-8
[9] Mohammed, M.; Watanabe, K.; Takeuchi, S., Grey model for prediction of pore pressure change, Environmental Earth Sciences, 60, 7, 1523-1534 (2010) · doi:10.1007/s12665-009-0287-y
[10] Li, X. L.; Li, Y. J.; Zhang, K., Improved grey lorecasting model of fault prediction in missile applications, Computer Simulation, 27, 33-36 (2010)
[11] Wei, Y.; Hu, D. H., Deficiency of the smoothness condition and its remedy, Systems Engineering—Theory & Practice, 29, 8, 165-170 (2009) · doi:10.1016/S1874-8651(10)60066-X
[12] Dai, W. Z.; Wu, Z. H.; Yang, A. P., New buffer operators with variable weight based on average tempo and their optimization, Grey Systems: Theory and Application, 1, 2, 168-177 (2001) · doi:10.1108/20439371111163792
[13] Dang, Y. G.; Liu, S. F., The GM models that x(n) be taken as initial value, The International Journal of Systems & Cybernetics, 33, 2, 247-254 (2004) · Zbl 1083.93509 · doi:10.1108/03684920410514175
[14] Wang, Z. X.; Dang, Y. G.; Liu, S. F., The optimization of background value in GM, (1, 1) model, The Journal of Grey System, 10, 2, 69-74 (2007)
[15] Song, Z. M.; Wang, Z. D.; Tong, X. J., Grey generating space on opposite accumulation, The Journal of Grey System, 13, 305-308 (2001)
[16] Wang, Z. X.; Dang, Y. G.; Pei, L. L., Combinatorial optimization of initial value in GM, (1, 1) power model, Statistics & Information Forum, 6, 55-58 (2012)
[17] Liu, S. F.; Deng, J. L., The range suitable for GM(1, 1), The Journal of Grey System, 11, 131-138 (1996)
[18] Xie, N.-M.; Liu, S.-F., Discrete grey forecasting model and its optimization, Applied Mathematical Modelling, 33, 2, 1173-1186 (2009) · Zbl 1168.62380 · doi:10.1016/j.apm.2008.01.011
[19] Dai, W. Z.; Li, J. F., Modeling research on non-equidistance GM(1, 1) model, Systems Engineering—Theory & Practice, 25, 9, 89-93 (2005)
[20] Zeng, B.; Liu, S. F.; Fang, Z. G.; Xie, N. M., Grey combined forecast models and its application, Chinese Journal of Management Science, 17, 150-155 (2009)
[21] Shen, C. G.; Chen, W. M.; Pei, L. L., Optimization of the initial conditions in unbiased grey verhulst model, Statistics & Information Forum, 5, 3-6 (2011)
[22] Jiang, H.; He, W. W., Grey relational grade in local support vector regression for financial time series prediction, Expert Systems with Applications, 39, 3, 2256-2262 (2012) · doi:10.1016/j.eswa.2011.07.100
[23] Zeng, B.; Liu, S. F.; Xie, N. M., Prediction model for interval grey number based on grey band and grey layer, Control and Decision, 25, 1585-1588 (2010)
[24] Zeng, B.; Liu, S. F.; Meng, W., Prediction model of discrete grey numbers based on kernels and areas, Control and Decision, 26, 9, 1421-1424 (2011)
[25] Zeng, B.; Liu, S. F.; Xie, N. M., Prediction model of interval grey number based on DGM, (1, 1), Journal of Systems Engineering and Electronics, 21, 4, 598-603 (2010) · doi:10.3969/j.issn.1004-4132.2010.04.011
[26] Zeng, B.; Liu, S. F., Calculation for kernel of interval grey number based on barycenter approach, Transactions of Nanjing University of Aeronautics & Astronautics, 30, 2, 216-220 (2013)
[27] Seguí, X.; Pujolasus, E.; Betrò, S., Fuzzy model for risk assessment of persistent organic pollutants in aquatic ecosystems, Environmental Pollution, 178, 23-32 (2013) · doi:10.1016/j.envpol.2013.02.014
[28] Liu, S. F.; Lin, Y., Grey Systems Theory and Applications (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1222.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.