The constants in a posteriori error indicator for state-constrained optimal control problems with spectral methods. (English) Zbl 1474.49064

Summary: We employ Legendre-Galerkin spectral methods to solve state-constrained optimal control problems. The constraint on the state variable is an integration form. We choose one-dimensional case to illustrate the techniques. Meanwhile, we investigate the explicit formulae of constants within a posteriori error indicator.


49M25 Discrete approximations in optimal control
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI


[1] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications (1977), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA · Zbl 0412.65058
[2] Li, R.; Liu, W.; Ma, H.; Tang, T., Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM Journal on Control and Optimization, 41, 5, 1321-1349 (2002) · Zbl 1034.49031
[3] Liu, W. B.; Yan, N. N., A posteriori error estimates for distributed convex optimal control problems, Advances in Computational Mathematics, 15, 1-4, 285-309 (2001) · Zbl 1008.49024
[4] Liu, W. B.; Yan, N. N., A posteriori error estimates for convex boundary control problems, SIAM Journal on Numerical Analysis, 39, 1, 73-99 (2001) · Zbl 0988.49018
[5] Zhou, J. W.; Chen, Y. P.; Dai, Y. Q., Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint, Applied Mathematics and Computation, 217, 5, 2057-2066 (2010) · Zbl 1227.65057
[6] Chen, Y.; Yi, N.; Liu, W., A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM Journal on Numerical Analysis, 46, 5, 2254-2275 (2008) · Zbl 1175.49003
[7] Yuan, L.; Yang, D. P., A posteriori error estimate of optimal control problem of PDE with integral constraint for state, Journal of Computational Mathematics, 27, 4, 525-542 (2009) · Zbl 1212.49048
[8] Ainsworth, M.; Oden, J. T., A posteriori error estimation in finite element analysis, Computer Methods in Applied Mechanics and Engineering, 142, 1-2, 1-88 (1997) · Zbl 0895.76040
[9] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods, 15 (1994), New York, NY, USA: Springer, New York, NY, USA · Zbl 0804.65101
[10] Guo, B. Q.; Shi, Z.-C.; Chen, Z.; Tang, T.; Yu, D., Recent progress in a-posteriori error estimation for the p-version of finite element method, Recent Advances in Adaptive. Recent Advances in Adaptive, Comtemporary Mathematics, 383, 47-61 (2005), Providence, RI, USA: American Mathematical Society, Providence, RI, USA
[11] Zhou, J. W.; Yang, D. P., An improved a posteriori error estimate for the Galerkin spectral method in one dimension, Computers & Mathematics with Applications, 61, 2, 334-340 (2011) · Zbl 1211.65105
[12] Zhou, J. W.; Yang, D. P., Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, International Journal of Computer Mathematics, 88, 14, 2988-3011 (2011) · Zbl 1243.49029
[13] Adams, R. A., Sobolev Spaces (1978), New York, NY, USA: Academic Press, New York, NY, USA
[14] Shen, J., Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM Journal on Scientific Computing, 15, 6, 1489-1505 (1994) · Zbl 0811.65097
[15] Evans, L. C., Partial Differential Equations. Partial Differential Equations, Graduate Studies in Mathematics, 19 (1998), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0902.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.