Klein-Gordon equations on modulation spaces. (English) Zbl 1474.35484

Summary: We consider the Cauchy problem for a family of Klein-Gordon equations with initial data in modulation spaces \(M_{p, 1}^a\). We develop the well-posedness, blowup criterion, stability of regularity, scattering theory, and stability theory.


35L71 Second-order semilinear hyperbolic equations
35L15 Initial value problems for second-order hyperbolic equations
35P25 Scattering theory for PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B35 Stability in context of PDEs
35B44 Blow-up in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI


[1] Ruzhansky, M.; Sugimoto, M.; Wang, B. X., Modulation spaces and nonlinear evolution equations, Progress in Mathematics, 301, 267-283 (2012) · Zbl 1256.42038
[2] Wang, B. X.; Hudzik, H., The global Cauchy problem for the NLS and NLKG with small rough data, Journal of Differential Equations, 232, 1, 36-73 (2007) · Zbl 1121.35132
[3] Guo, W.; Chen, J., Stability of schrödinger equations on modulation spaces, Frontiers of Mathematics in China, 9, 2, 275-301 (2014) · Zbl 1311.42058
[4] Bényi, Á.; Okoudjou, K. A., Local well-posedness of nonlinear dispersive equations on modulation spaces, Bulletin of the London Mathematical Society, 41, 3, 549-558 (2009) · Zbl 1173.35115 · doi:10.1112/blms/bdp027
[5] Tao, T., Nonlinear dispersive equations: local and global analysis · Zbl 1106.35001
[6] Feichtinger, H. G., Modulation spaces on locally compact Abelian group (1983), University of Vienna
[7] Wang, B. X.; Zhao, L. F.; Guo, B. L., Isometric decomposition operators, function spaces \(E_{p, q}^\lambda\) and applications to nonlinear evolution equations, Journal of Functional Analysis, 233, 1, 1-39 (2006) · Zbl 1099.46023 · doi:10.1016/j.jfa.2005.06.018
[8] Triebel, H., Theory of Function Spaces (1983), Basel, Switzerland: Birkhauser, Basel, Switzerland · Zbl 0546.46028
[9] Bényi, Á.; Gröchenig, K.; Okoudjou, K. A.; Rogers, L. G., Unimodular Fourier multipliers for modulation spaces, Journal of Functional Analysis, 246, 2, 366-384 (2007) · Zbl 1120.42010 · doi:10.1016/j.jfa.2006.12.019
[10] Wang, B.; Hao, C.; Huo, C., Harmonic Analysis Method For Nonlinear Evolution Equations I (2011), Hackensack, NJ, USA: World Scientific, Hackensack, NJ, USA · Zbl 1254.35002
[11] Chen, J.; Fan, D., Estimates for wave and Klein-Gordon equations on modulation sapces, Science China Mathematics, 55, 10, 2109-2123 (2012) · Zbl 1258.42022
[12] Strauss, W. A., Nonlinear scattering theory at low energy, Journal of Functional Analysis, 41, 1, 110-133 (1981) · Zbl 0466.47006 · doi:10.1016/0022-1236(81)90063-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.