De la Sen, Manuel; Ibeas, Asier Convergence properties and fixed points of two general iterative schemes with composed maps in Banach spaces with applications to guaranteed global stability. (English) Zbl 1474.54145 Abstr. Appl. Anal. 2014, Article ID 948749, 13 p. (2014). Summary: This paper investigates the boundedness and convergence properties of two general iterative processes which involve sequences of self-mappings on either complete metric or Banach spaces. The sequences of self-mappings considered in the first iterative scheme are constructed by linear combinations of a set of self-mappings, each of them being a weighted version of a certain primary self-mapping on the same space. The sequences of self-mappings of the second iterative scheme are powers of an iteration-dependent scaled version of the primary self-mapping. Some applications are also given to the important problem of global stability of a class of extended nonlinear polytopic-type parameterizations of certain dynamic systems. Cited in 1 Document MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 47J25 Iterative procedures involving nonlinear operators PDFBibTeX XMLCite \textit{M. De la Sen} and \textit{A. Ibeas}, Abstr. Appl. Anal. 2014, Article ID 948749, 13 p. (2014; Zbl 1474.54145) Full Text: DOI OA License References: [1] Cho, Y. J.; Kadelburg, Z.; Saadati, R.; Shatanawi, W., Coupled fixed point theorems under weak contractions, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1250.54046 · doi:10.1155/2012/184534 [2] Nashine, H. K.; Khan, M. S., An application of fixed point theorem to best approximation in locally convex space, Applied Mathematics Letters, 23, 2, 121-127 (2010) · Zbl 1200.47076 · doi:10.1016/j.aml.2009.06.025 [3] Khan, M. S.; Rao, K. P. R.; Rao, K. R. K., Some fixed point theorems in D*-cone metric spaces, Journal of Advanced Studies in Topology, 2, 2, 37-45 (2011) · Zbl 1338.54180 [4] Yao, Y. H.; Liou, Y. C.; Kang, S. M., An iterative approach to mixed equilibrium problems and fixed point problems, Fixed Point Theory and Applications, 2013, article 183 (2013) · Zbl 1476.47084 · doi:10.1186/1687-1812-2013-183 [5] Cordero, A.; Hueso, J. L.; Martínez, E.; Torregrosa, J. R., Increasing the convergence order of an iterative method for nonlinear systems, Applied Mathematics Letters, 25, 12, 2369-2374 (2012) · Zbl 1252.65093 · doi:10.1016/j.aml.2012.07.005 [6] Cordero, A.; Hueso, J. L.; Martínez, E.; Torregrosa, J. R., Steffensen type methods for solving nonlinear equations, Journal of Computational and Applied Mathematics, 236, 12, 3058-3064 (2012) · Zbl 1237.65049 · doi:10.1016/j.cam.2010.08.043 [7] Miñambres, J. J.; de la Sen, M., Application of numerical methods to the acceleration of the convergence of the adaptive-control algorithms: the one dimensional case, Computers & Mathematics with Applications, 12, 10, 1049-1056 (1986) · Zbl 0617.65045 · doi:10.1016/0898-1221(86)90010-6 [8] Istrăţescu, V. I., Fixed Point Theory: An Introduction. Fixed Point Theory: An Introduction, Mathematics and Its Applications, 7 (1979), Dordrecht, The Netherlands: D. Reidel Publishing, Dordrecht, The Netherlands · Zbl 0465.47035 [9] Cho, S. Y.; Li, W. L.; Kang, S. M., Convergence analysis of an iterative algorithm for monotone operators, Journal of Inequalities and Applications, 2013, article 199 (2013) · Zbl 1364.47017 · doi:10.1186/1029-242X-2013-199 [10] Argyros, I. K.; Cho, Y. J.; Khattri, S. K., On a new semilocal convergence analysis for the Jarratt method, Journal of Inequalities and Applications, 2013, article 194 (2013) · Zbl 1282.65061 · doi:10.1186/1029-242X-2013-194 [11] Torregrosa, J. R.; Argyros, I. K.; Chun, C. B.; Cordero, A.; Soleymani, F., Iterative methods for nonlinear equations or systems and their applications, Journal of Applied Mathematics, 2013 (2013) · doi:10.1155/2013/656953 [12] Jleli, M.; Karapınar, E.; Samet, B., Best proximity point results for MK-proximal contractions, Abstract and Applied Analysis, 2012 (2012) · Zbl 1296.54066 · doi:10.1155/2012/193085 [13] Azhmyakov, V.; Basin, M.; Raisch, J., A proximal point based approach to optimal control of affine switched systems, Discrete Event Dynamic Systems, 22, 1, 61-81 (2012) · Zbl 1242.49080 · doi:10.1007/s10626-011-0109-8 [14] de la Sen, M.; Agarwal, R. P., Fixed point-type results for a class of extended cyclic self-mappings under three general weak contractive conditions of rational type, Fixed Point Theory and Applications, 2011, article 102 (2011) · Zbl 1312.54019 · doi:10.1186/1687-1812-2011-102 [15] Park, C.; Rassias, T. M., Fuzzy stability of an additive-quartic functional equation: a fixed point approach, Functional Equations in Mathematical Analysis, 247-260 (2012), New York, NY, USA: Springer, New York, NY, USA · Zbl 1252.39038 · doi:10.1007/978-1-4614-0055-4_20 [16] Kenary, H. A.; Jang, S. Y.; Park, C., A fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory and Applications, 2011, article 67 (2011) · Zbl 1278.39038 · doi:10. [17] de la Sen, M., Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1194.54059 · doi:10.1155/2010/572057 [18] Jleli, M.; Karapınar, E.; Samet, B., A best proximity point result in modular spaces with the Fatou property, Abstract and Applied Analysis, 2013 (2013) · Zbl 1325.41019 · doi:10.1155/2013/329451 [19] Pathak, H. K.; Shahzad, N., Some results on best proximity points for cyclic mappings, Bulletin of the Belgian Mathematical Society, Simon Stevin, 20, 3, 559-572 (2013) · Zbl 1278.54043 [20] de la Sen, M.; Karapinar, E., Best proximity points of generalized semicyclic impulsive self-mappings: applications to impulsive differential and difference equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1357.54032 · doi:10.1155/2013/505487 [21] Dey, D.; Kumar Laha, A.; Saha, M., Approximate coincidence point of two nonlinear mappings, Journal of Mathematics, 2013 (2013) · Zbl 1268.54022 · doi:10.1155/2013/962058 [22] Dey, D.; Saha, M., Approximate fixed point of Reich operator, Acta Mathematica Universitatis Comenianae, 82, 1, 119-123 (2013) · Zbl 1324.54067 [23] de la Sen, M.; Ibeas, A., Asymptotically non-expansive self-maps and global stability with ultimate boundedness of dynamic systems, Applied Mathematics and Computation, 219, 22, 10655-10667 (2013) · Zbl 1298.47063 · doi:10.1016/j.amc.2013.04.009 [24] de la Sen, M.; Agarwal, R. P.; Nistal, R., Non-expansive and potentially expansive properties of two modified p-cyclic self-maps in metric spaces, Journal of Nonlinear and Convex Analysis, 14, 4, 661-686 (2013) · Zbl 1325.54027 [25] Hussain, N.; Latif, A.; Salimi, P., Best proximity point results for modified Suzuki \(α-ψ\)-proximal contractions, Fixed Point Theory and Applications, 2014 article 10 (2014) · Zbl 1310.41029 · doi:10.1186/1687-1812-2014-10 [26] Ashyralyev, A.; Sharifov, Y. A., Optimal control problem for impulsive systems with integral boundary conditions, Proceedings of the 1st International Conference on Analysis and Applied Mathematics (ICAAM ’12) · doi:10.1063/1.4747627 [27] Li, X. D.; Akca, H.; Fu, X. L., Uniform stability of impulsive infinite delay differential equations with applications to systems with integral impulsive conditions, Applied Mathematics and Computation, 219, 14, 7329-7337 (2013) · Zbl 1297.34082 · doi:10.1016/j.amc.2012.12.033 [28] Stamov, G.; Akca, H.; Stamova, I., Uncertain dynamic systems: analysis and applications, Abstract and Applied Analysis, 2013 (2013) · doi:10.1155/2013/863060 [29] Li, H.; Sun, X.; Karimi, H. R.; Niu, B., Dynamic output-feedback passivity control for fuzzy systems under variable sampling, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.93157 · doi:10.1155/2013/767093 [30] Xiang, Z.; Liu, S.; Mahmoud, M. S., Robust \(H_\infty\) reliable control for uncertain switched neutral systems with distributed delays, IMA Journal of Mathematical Control and Information (2013) · Zbl 1308.93075 · doi:10.1093/imamci/dnt031 [31] Khan, Q. J. A.; Krishnan, E. V.; Al-Lawatia, M. A., A stage structure model for the growth of a population involving switching and cooperation, ZAMM-Journal of Applied Mathematics and Mechanics, 82, 2, 125-135 (2002) · Zbl 1004.92038 [32] Azhmyakov, V.; Angulo, M. T., Applications of the strong approximability property to a class of affine switched systems and to relaxed differential equations with affine structure, International Journal of Systems Science, 42, 11, 1899-1907 (2011) · Zbl 1260.93081 · doi:10.1080/00207721.2011.570879 [33] de la Sen, M., On positivity of singular regular linear time-delay time-invariant systems subject to multiple internal and external incommensurate point delays, Applied Mathematics and Computation, 190, 1, 382-401 (2007) · Zbl 1117.93034 · doi:10.1016/j.amc.2007.01.053 [34] de la Sen, M., About the positivity of a class of hybrid dynamic linear systems, Applied Mathematics and Computation, 189, 1, 852-868 (2007) · Zbl 1119.93038 · doi:10.1016/j.amc.2006.11.182 [35] de la Sen, M., Total stability properties based on fixed point theory for a class of hybrid dynamic systems, Fixed Point Theory and Applications, 2009 (2009) · Zbl 1189.34023 · doi:10.1155/2009/826438 [36] de La Sen, M., On the robust adaptive stabilization of a class of nominally first-order hybrid systems, IEEE Transactions on Automatic Control, 44, 3, 597-602 (1999) · Zbl 1056.93616 · doi:10.1109/9.751359 [37] de la Sen, M., On some structures of stabilizing control laws for linear and time-invariant systems with bounded point delays and unmeasurable states, International Journal of Control, 59, 2, 529-541 (1994) · Zbl 0799.93048 · doi:10.1080/00207179408923091 [38] de la Sen, M.; Ibeas, A., Stability results for switched linear systems with constant discrete delays, Mathematical Problems in Engineering, 2008 (2008) · Zbl 1162.93393 · doi:10.1155/2008/543145 [39] de la Sen, M.; Ibeas, A., On the global asymptotic stability of switched linear time-varying systems with constant point delays, Discrete Dynamics in Nature and Society, 2008 (2008) · Zbl 1166.34040 · doi:10.1155/2008/231710 [40] de la Sen, M.; Ibeas, A.; Alonso-Quesada, S., Asymptotic hyperstability of a class of linear systems under impulsive controls subject to an integral Popovian constraint, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.93263 · doi:10.1155/2013/382762 [41] Marchenko, V. M., Observability of hybrid discrete-continuous time system, Differential Equations, 49, 11, 1389-1404 (2013) · Zbl 1290.93027 · doi:10.1134/S0012266113110074 [42] Niamsup, P.; Rojsiraphisa, T.; Rajchakit, M., Robust stability and stabilization of uncertain switched discrete-time systems, Advances in Difference Equations, 2012, article 134 (2012) · Zbl 1388.93065 · doi:10.1186/1687-1847-2012-134 [43] Rajchakit, G., Stabilization of switched discrete-time systems with convex polytopic uncertainties, Journal of Computational Analysis & Applications, 16, 1, 20-29 (2014) · Zbl 1292.93115 [44] Darwish, M. A.; Sadarangani, K., On existence and asymptotic stability of solutions of a functional-integral equation of fractional order, Journal of Convex Analysis, 17, 2, 413-426 (2010) · Zbl 1196.45007 [45] Darwish, M. A.; Henderson, J., Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation, Fractional Calculus & Applied Analysis, 12, 1, 71-86 (2009) · Zbl 1181.45014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.