×

Multiplicity of nontrivial solutions for a class of nonlocal elliptic operators systems of Kirchhoff type. (English) Zbl 1474.35283

Summary: We investigate the existence and multiplicity of nontrivial solutions for a Kirchhoff type problem involving the nonlocal integrodifferential operators with homogeneous Dirichlet boundary conditions. The main tool used for obtaining our result is Morse theory.

MSC:

35J57 Boundary value problems for second-order elliptic systems
35J50 Variational methods for elliptic systems
35J60 Nonlinear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[2] Servadei, R.; Valdinoci, E., Mountain pass solutions for non-local elliptic operators, Journal of Mathematical Analysis and Applications, 389, 2, 887-898 (2012) · Zbl 1234.35291 · doi:10.1016/j.jmaa.2011.12.032
[3] Caffarelli, L. A.; Salsa, S.; Silvestre, L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Inventiones Mathematicae, 171, 2, 425-461 (2008) · Zbl 1148.35097 · doi:10.1007/s00222-007-0086-6
[4] Servadei, R.; Valdinoci, E., Variational methods for non-local operators of elliptic type, Discrete and Continuous Dynamical Systems, 33, 5, 2105-2137 (2013) · Zbl 1303.35121 · doi:10.3934/dcds.2013.33.2105
[5] Tan, J., The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calculus of Variations and Partial Differential Equations, 36, 21-41 (2011) · Zbl 1248.35078
[6] Barrios, B.; Colorado, E.; de Pablo, A.; Sánchez, U., On some critical problems for the fractional Laplacian operator, Journal of Differential Equations, 252, 11, 6133-6162 (2012) · Zbl 1245.35034 · doi:10.1016/j.jde.2012.02.023
[7] Bai, C., Existence results for non-local operators of elliptic type, Nonlinear Analysis: Theory, Methods & Applications, 83, 82-90 (2013) · Zbl 1302.35398 · doi:10.1016/j.na.2013.01.012
[8] Dipierro, S.; Pinamonti, A., A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian, Journal of Differential Equations, 255, 1, 85-119 (2013) · Zbl 1286.35100 · doi:10.1016/j.jde.2013.04.001
[9] Chen, C.; Kuo, Y.; Wu, T., The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, Journal of Differential Equations, 250, 4, 1876-1908 (2011) · Zbl 1214.35077 · doi:10.1016/j.jde.2010.11.017
[10] Cheng, B., New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, Journal of Mathematical Analysis and Applications, 394, 2, 488-495 (2012) · Zbl 1254.35082 · doi:10.1016/j.jmaa.2012.04.025
[11] Liu, D.; Zhao, P., Multiple nontrivial solutions to a \(p\)-Kirchhoff equation, Nonlinear Analysis: Theory, Methods & Applications, 75, 13, 5032-5038 (2012) · Zbl 1248.35018 · doi:10.1016/j.na.2012.04.018
[12] Fiscella, A.; Valdinoci, E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Analysis: Theory, Methods & Applications, 94, 156-170 (2014) · Zbl 1283.35156 · doi:10.1016/j.na.2013.08.011
[13] Chen, C.; Zhu, Q., Existence of positive solutions to \(p\)-Kirchhoff-type problem without compactness conditions, Applied Mathematics Letters, 28, 82-87 (2014) · Zbl 1317.35058 · doi:10.1016/j.aml.2013.10.005
[14] Djellit, A.; Tas, S., Quasilinear elliptic systems with critical Sobolev exponents in \(R^N\), Nonlinear Analysis: Theory, Methods & Applications, 66, 7, 1485-1497 (2007) · Zbl 1118.35023 · doi:10.1016/j.na.2006.02.005
[15] Liu, J. Q., The Morse index of a saddle point, Systems Science and Mathematical Sciences, 2, 1, 32-39 (1989) · Zbl 0732.58011
[16] Liu, J.; Su, J., Remarks on multiple nontrivial solutions for quasi-linear resonant problems, Journal of Mathematical Analysis and Applications, 258, 1, 209-222 (2001) · Zbl 1050.35025 · doi:10.1006/jmaa.2000.7374
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.