Hu, Zhigang; Liu, Wenbin; Liu, Jiaying Ground state solutions for a class of fractional differential equations with Dirichlet boundary value condition. (English) Zbl 1474.34034 Abstr. Appl. Anal. 2014, Article ID 958420, 7 p. (2014). Summary: In this paper, we apply the method of the Nehari manifold to study the fractional differential equation \((d / d t)((1 / 2) {}_0 D_t^{- \beta}(u'(t)) +(1 / 2) {}_t D_T^{- \beta}(u'(t))) = f(t, u(t))\), a.e. \(t \in [0, T]\), and \(u \left(0\right) = u \left(T\right) = 0\), where \({}_0 D_t^{- \beta}\), \({}_t D_T^{- \beta}\) are the left and right Riemann-Liouville fractional integrals of order \(0 \leq \beta < 1\), respectively. We prove the existence of a ground state solution of the boundary value problem. Cited in 5 Documents MSC: 34A08 Fractional ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations PDFBibTeX XMLCite \textit{Z. Hu} et al., Abstr. Appl. Anal. 2014, Article ID 958420, 7 p. (2014; Zbl 1474.34034) Full Text: DOI OA License References: [1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherlands: Elsevier Science B.V., Amsterdam, The Netherlands · Zbl 1092.45003 [2] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002 [3] Podlubny, I., Fractional Differential Equations (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0918.34010 [4] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach (1993), Langhorne, Pa, USA: Gordon and Breach, Langhorne, Pa, USA · Zbl 0818.26003 [5] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109, 3, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6 [6] Agarwal, R. P.; O’Regan, D.; Staněk, S., Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, Journal of Mathematical Analysis and Applications, 371, 1, 57-68 (2010) · Zbl 1206.34009 · doi:10.1016/j.jmaa.2010.04.034 [7] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Computers & Mathematics with Applications, 58, 9, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091 [8] Bai, Z.; Lu, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, Journal of Mathematical Analysis and Applications, 311, 2, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052 [9] Bai, Z.; Zhang, Y., The existence of solutions for a fractional multi-point boundary value problem, Computers & Mathematics with Applications, 60, 8, 2364-2372 (2010) · Zbl 1205.34018 · doi:10.1016/j.camwa.2010.08.030 [10] Chen, J.; Tang, X. H., Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstract and Applied Analysis, 2012 (2012) · Zbl 1235.34011 · doi:10.1155/2012/648635 [11] Ge, B., Multiple solutions for a class of fractional boundary value problems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.34009 · doi:10.1155/2012/468980 [12] Jiang, W., The existence of solutions to boundary value problems of fractional differential equations at resonance, Nonlinear Analysis: Theory, Methods & Applications, 74, 5, 1987-1994 (2011) · Zbl 1236.34006 · doi:10.1016/j.na.2010.11.005 [13] Liang, S. H.; Zhang, J. H., Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Analysis: Theory, Methods and Applications, 71, 11, 5545-5550 (2009) · Zbl 1185.26011 · doi:10.1016/j.na.2009.04.045 [14] Zhang, S., Existence of solution for a boundary value problem of fractional order, Acta Mathematica Scientia B, 26, 2, 220-228 (2006) · Zbl 1106.34010 · doi:10.1016/S0252-9602(06)60044-1 [15] Zhang, S., Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Computers & Mathematics with Applications, 61, 4, 1202-1208 (2011) · Zbl 1217.34011 · doi:10.1016/j.camwa.2010.12.071 [16] Ervin, V. J.; Roop, J. P., Variational formulation for the stationary fractional advection dispersion equation, Numerical Methods for Partial Differential Equations, 22, 3, 558-576 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112 [17] Jiao, F.; Zhou, Y., Existence of solutions for a class of fractional boundary value problems via critical point theory, Computers & Mathematics with Applications, 62, 3, 1181-1199 (2011) · Zbl 1235.34017 · doi:10.1016/j.camwa.2011.03.086 [18] Jiao, F.; Zhou, Y., Existence results for fractional boundary value problem via critical point theory, International Journal of Bifurcation and Chaos, 22, 4 (2012) · Zbl 1258.34015 · doi:10.1142/S0218127412500861 [19] Bai, C., Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.34008 · doi:10.1155/2012/963105 [20] Bai, C., Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem, Electronic Journal of Differential Equations, 2012, 176, 1-9 (2012) · Zbl 1254.34009 [21] Li, Y.; Sun, H.; Zhang, Q., Existence of solutions to fractional boundary-value problems with a parameter, Electronic Journal of Differential Equations, 2013, 141 (2013) · Zbl 1294.34006 [22] Sun, H. R.; Zhang, Q. G., Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique, Computers & Mathematics with Applications, 64, 10, 3436-3443 (2012) · Zbl 1268.34027 · doi:10.1016/j.camwa.2012.02.023 [23] Nehari, Z., On a class of nonlinear second-order differential equations, Transactions of the American Mathematical Society, 95, 101-123 (1960) · Zbl 0097.29501 · doi:10.1090/S0002-9947-1960-0111898-8 [24] Nehari, Z., Characteristic values associated with a class of non-linear second-order differential equations, Acta Mathematica, 105, 141-175 (1961) · Zbl 0099.29104 · doi:10.1007/BF02559588 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.