×

Quantized state-feedback stabilization for delayed Markovian jump linear systems with generally incomplete transition rates. (English) Zbl 1406.93261

Summary: This paper is concerned with the robust quantized state-feedback controller design problem for a class of continuous-time Markovian jump linear uncertain systems with general uncertain transition rates and input quantization. The uncertainties under consideration emerge in both system parameters and mode transition rates. This new uncertain model is more general than the existing ones and can be applicable to more practical situations because each transition rate can be completely unknown or only its estimate value is known. Based on linear matrix inequalities, the quantized state-feedback controller is formulated to ensure the closed-loop system is stable in mean square. Finally, a numerical example is presented to verify the validity of the developed theoretical results.

MSC:

93D15 Stabilization of systems by feedback
93C05 Linear systems in control theory
93C41 Control/observation systems with incomplete information
93E15 Stochastic stability in control theory
93B35 Sensitivity (robustness)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mao, X.; Yuan, C., Stochastic Differential Equations with Markovian Switching, xviii+409 (2006), Imperial College Press · Zbl 1126.60002 · doi:10.1142/p473
[2] Zhang, H.; Shi, Y.; Wang, J. M., On energy-to-peak filtering for nonuniformly sampled nonlinear sampled nonlinear systems: a Markovian jump system approach, IEEE Transactions on Fuzzy Systems, 22, 212-222 (2014)
[3] Wu, Z.; Shi, P.; Su, H.; Chu, J., Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data, IEEE Transactions on Cybernetics, 43, 1796-1806 (2013)
[4] Wang, Z. D.; Liu, Y. R.; Yu, L.; Liu, X. H., Exponential stability of delayed recurrent neural networks with Markovian jumping parameters, Physics Letters A, 356, 346-352 (2006) · Zbl 1160.37439
[5] Wu, Z.-G.; Park, J. H.; Su, H.; Chu, J., Stochastic stability analysis for discrete-time singular Markov jump systems with time-varying delay and piecewise-constant transition probabilities, Journal of the Franklin Institute. Engineering and Applied Mathematics, 349, 9, 2889-2902 (2012) · Zbl 1264.93267 · doi:10.1016/j.jfranklin.2012.08.012
[6] Wu, Z.; Su, H.; Chu, J., \(H_\infty\) model reduction for discrete singular Markovian jump systems, Proceedings of the Institution of Mechanical Engineers, 223, 7, 1017-1025 (2009)
[7] Liu, M.; Shi, P.; Zhang, L.; Zhao, X., Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique, IEEE Transactions on Circuits and Systems I, 58, 11, 2755-2764 (2011) · Zbl 1468.93187 · doi:10.1109/TCSI.2011.2157734
[8] Kao, Y.; Wang, C.; Zhang, L., Delay-dependent exponential stability of impulsive Markovian jumping cohen-grossberg neural networks with reaction-diffusion and mixed delays, Neural Processing Letters, 38, 3, 321-346 (2013)
[9] Kao, Y.-G.; Guo, J.-F.; Wang, C.-H.; Sun, X.-Q., Delay-dependent robust exponential stability of Markovian jumping reaction-diffusion Cohen-Grossberg neural networks with mixed delays, Journal of the Franklin Institute. Engineering and Applied Mathematics, 349, 6, 1972-1988 (2012) · Zbl 1300.93131 · doi:10.1016/j.jfranklin.2012.04.005
[10] Kao, Y.; Wang, C.; Zha, F.; Cao, H., Stability in mean of partial variables for stochastic reaction-diffusion systems with Markovian switching, Journal of the Franklin Institute. Engineering and Applied Mathematics, 351, 1, 500-512 (2014) · Zbl 1293.93765 · doi:10.1016/j.jfranklin.2013.04.009
[11] Zhang, H.; Shi, Y.; Wang, J., Observer-based tracking controller design for networked predictive control systems with uncertain Markov delays, International Journal of Control, 86, 10, 1824-1836 (2013) · Zbl 1312.93022 · doi:10.1080/00207179.2013.797107
[12] Karan, M.; Shi, P.; Kaya, C. Y., Transition probability bounds for the stochastic stability robustness of continuous- and discrete-time Markovian jump linear systems, Automatica, 42, 12, 2159-2168 (2006) · Zbl 1104.93056 · doi:10.1016/j.automatica.2006.07.002
[13] Xiong, J.; Lam, J., Robust \(H_2\) control of Markovian jump systems with uncertain switching probabilities, International Journal of Systems Science. Principles and Applications of Systems and Integration, 40, 3, 255-265 (2009) · Zbl 1167.93335 · doi:10.1080/00207720802300347
[14] Xiong, J.; Lam, J.; Gao, H.; Ho, D. W. C., On robust stabilization of Markovian jump systems with uncertain switching probabilities, Automatica, 41, 5, 897-903 (2005) · Zbl 1093.93026 · doi:10.1016/j.automatica.2004.12.001
[15] Zhang, L.; Boukas, E.-K., Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45, 2, 463-468 (2009) · Zbl 1158.93414 · doi:10.1016/j.automatica.2008.08.010
[16] Zhang, L.; Boukas, E.-K., Mode-dependent \(H_\infty\) filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45, 6, 1462-1467 (2009) · Zbl 1166.93378 · doi:10.1016/j.automatica.2009.02.002
[17] Zhang, L.; Boukas, E.-K., \(H_\infty\) control for discrete-time Markovian jump linear systems with partly unknown transition probabilities, International Journal of Robust and Nonlinear Control, 19, 8, 868-883 (2009) · Zbl 1166.93320 · doi:10.1002/rnc.1355
[18] Zhang, L.; Boukas, E.-K.; Lam, J., Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities, IEEE Transactions on Automatic Control, 53, 10, 2458-2464 (2008) · Zbl 1367.93710 · doi:10.1109/TAC.2008.2007867
[19] Zhang, H.; Wang, J.; Shi, Y., Robust \(H_\infty\) sliding-mode control for Markovian jump systems subject to intermittent observations and partially known transition probabilities, Systems & Control Letters, 62, 12, 1114-1124 (2013) · Zbl 1282.93077 · doi:10.1016/j.sysconle.2013.09.006
[20] Zhang, Y.; He, Y.; Wu, M.; Zhang, J., Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices, Automatica, 47, 1, 79-84 (2011) · Zbl 1209.93162 · doi:10.1016/j.automatica.2010.09.009
[21] Xiong, L.; Tian, J.; Liu, X., Stability analysis for neutral Markovian jump systems with partially unknown transition probabilities, Journal of the Franklin Institute. Engineering and Applied Mathematics, 349, 6, 2193-2214 (2012) · Zbl 1300.93180 · doi:10.1016/j.jfranklin.2012.04.003
[22] Kao, Y.; Changhong, W.; Jing, X.; Hamid Reza, K., Stabilisation of singular Markovian jump systems with generally uncertain transition rates, IEEE Transactions on Automatic Control (2014) · Zbl 1360.93743 · doi:10.1109/TAC.2014.2313756
[23] Guo, Y.; Wang, Z., Stability of Markovian jump systems with generally uncertain transition rates, Journal of the Franklin Institute. Engineering and Applied Mathematics, 350, 9, 2826-2836 (2013) · Zbl 1287.93106 · doi:10.1016/j.jfranklin.2013.06.013
[24] Zheng, B.-C.; Yang, G.-H., Quantised feedback stabilisation of planar systems via switching-based sliding-mode control, IET Control Theory & Applications, 6, 1, 149-156 (2012) · doi:10.1049/iet-cta.2010.0733
[25] Liberzon, D., Hybrid feedback stabilization of systems with quantized signals, Automatica, 39, 9, 1543-1554 (2003) · Zbl 1030.93042 · doi:10.1016/S0005-1098(03)00151-1
[26] Brockett, R. W.; Liberzon, D., Quantized feedback stabilization of linear systems, IEEE Transactions on Automatic Control, 45, 7, 1279-1289 (2000) · Zbl 0988.93069 · doi:10.1109/9.867021
[27] Zheng, B.-C.; Yang, G.-H., Decentralized sliding mode quantized feedback control for a class of uncertain large-scale systems with dead-zone input, Nonlinear Dynamics, 71, 3, 417-427 (2013) · Zbl 1268.93065 · doi:10.1007/s11071-012-0668-8
[28] Fu, M.; Xie, L., The sector bound approach to quantized feedback control, IEEE Transactions on Automatic Control, 50, 11, 1698-1711 (2005) · Zbl 1365.81064 · doi:10.1109/TAC.2005.858689
[29] Fu, M.; Xie, L., Quantized feedback control for linear uncertain systems, International Journal of Robust and Nonlinear Control, 20, 8, 843-857 (2010) · Zbl 1298.93134
[30] Tian, E.; Yue, D.; Zhao, X., Quantised control design for networked systems, IET Control Theory and Applications, 1, 6, 1693-1699 (2007)
[31] Yun, S. W.; Choi, Y. J.; Park, P., \(H_2\) control of continuous-time uncertain linear systems with input quantization and matched disturbances, Automatica, 45, 10, 2435-2439 (2009) · Zbl 1183.93117 · doi:10.1016/j.automatica.2009.05.023
[32] Che, W.-W.; Yang, G.-H., Quantised \(H_\infty\) filter design for discrete-time systems, International Journal of Control, 82, 2, 195-206 (2009) · Zbl 1168.93406 · doi:10.1080/00207170802036204
[33] Peng, C.; Tian, Y.-C., Networked \(H_\infty\) control of linear systems with state quantization, Information Sciences, 177, 24, 5763-5774 (2007) · Zbl 1126.93338 · doi:10.1016/j.ins.2007.05.025
[34] Zheng, B.-C.; Yang, G.-H., Quantized output feedback stabilization of uncertain systems with input nonlinearities via sliding mode control, International Journal of Robust and Nonlinear Control, 24, 2, 228-246 (2014) · Zbl 1279.93089 · doi:10.1002/rnc.2883
[35] Zheng, B.-C.; Yang, G.-H., Robust quantized feedback stabilization of linear systems based on sliding mode control, Optimal Control Applications & Methods, 34, 4, 458-471 (2013) · Zbl 1417.93257 · doi:10.1002/oca.2032
[36] Zheng, B. C.; Yang, G. H., \(H_2\) control of linear uncertain systems considering input quantization with encoder/decoder mismatch, ISA Transactions, 52, 557-582 (2013)
[37] Xiao, N.; Xie, L.; Fu, M., Stabilization of Markov jump linear systems using quantized state feedback, Automatica, 46, 10, 1696-1702 (2010) · Zbl 1204.93127 · doi:10.1016/j.automatica.2010.06.018
[38] Ye, D.; Zheng, B. C.; Yang, G. H., \(H_2\) control of Markov jump linear systems with unknown transition rates and input quantization, Proceedings of the 31st Chinese Control Conference
[39] Zhao, X.-G.; Ye, D.; Han, J.-D., \(H_2\) control for the continuous-time Markovian jump linear uncertain systems with partly known transition rates and input quantization, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.93222 · doi:10.1155/2013/426271
[40] Yin, S.; Luo, H.; Ding, S., Real-time implementation of fault-tolerant control systems with performance optimization, IEEE Transactions on Industrial Electronics, 64, 5, 2402-2411 (2014)
[41] Yin, S.; Wang, G.; Karimi, H., Data-driven design of robust fault detection system for wind turbines, Mechatronics (2013) · doi:10.1016/j.mechatronics.2013.11.009
[42] Yin, S.; Ding, S. X.; Sari, A. H. A.; Hao, H., Data-driven monitoring for stochastic systems and its application on batch process, International Journal of Systems Science. Principles and Applications of Systems and Integration, 44, 7, 1366-1376 (2013) · Zbl 1278.93259 · doi:10.1080/00207721.2012.659708
[43] Yin, S.; Ding, S.; Haghani, A.; Hao, H.; Zhang, P., A comparison study of basic datadriven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, Journal of Process Control, 22, 9, 1567-1581 (2012)
[44] Zhang, H.; Zhang, X. J.; Wang, J. M., Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilization, Vehicle System Dynamics, 52, 309-340 (2014)
[45] Zhang, H.; Shi, Y.; Mu, B. X., Optimal \(H_\infty \)-based linear-quadratic regulator tracking control for discrete-time Takagi-Sugeno fuzzy systems with preview actions, Journal of Dynamic Systems, Measurement and Control, 135 (2013) · doi:10.1115/1.4024007
[46] Zhang, H.; Shi, Y.; Liu, M. X., \(H_\infty\) step tracking control for networked discrete-time nonlinear systems with integral and predictive actions, IEEE Transactions on Industrial Informatics, 9, 337-345 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.