Karapınar, Erdal Discussion on \(\alpha\)-\(\psi\) contractions on generalized metric spaces. (English) Zbl 1474.54177 Abstr. Appl. Anal. 2014, Article ID 962784, 7 p. (2014). Summary: We discuss the existence and uniqueness of fixed points of \(\alpha\)-\(\psi\) contractive mappings in complete generalized metric spaces, introduced by A. Branciari [Publ. Math. 57, No. 1–2, 31–37 (2000; Zbl 0963.54031)]. Our results generalize and improve several results in the literature. Cited in 1 ReviewCited in 32 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. Citations:Zbl 0963.54031 PDF BibTeX XML Cite \textit{E. Karapınar}, Abstr. Appl. Anal. 2014, Article ID 962784, 7 p. (2014; Zbl 1474.54177) Full Text: DOI References: [1] Branciari, A., A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publicationes Mathematicae Debrecen, 57, 1-2, 31-37 (2000) · Zbl 0963.54031 [2] Samet, B., Discussion on “a fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces” by A. Branciari, Publicationes Mathematicae Debrecen, 76, 4, 493-494 (2010) · Zbl 1224.54106 [3] Jleli, M.; Samet, B., The Kannan’s fixed point theorem in a cone rectangular metric space, The Journal of Nonlinear Sciences and Applications, 2, 3, 161-167 (2009) · Zbl 1173.54321 [4] Kirk, W. A.; Shahzad, N., Generalized metrics and Caristis theorem, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1295.54060 [5] Kikina, L.; Kikina, K., A fixed point theorem in generalized metric spaces, Demonstratio Mathematica, 46, 1, 181-190 (2013) · Zbl 1272.54037 [6] Wilson, W. A., On semi-metric spaces, The American Journal of Mathematics, 53, 2, 361-373 (1931) · Zbl 0001.22804 [7] Das, P.; Dey, L. K., Fixed point of contractive mappings in generalized metric spaces, Mathematica Slovaca, 59, 4, 499-504 (2009) · Zbl 1240.54119 [8] Lakzian, H.; Samet, B., Fixed points for \((\psi, \varphi)\)-weakly contractive mappings in generalized metric spaces, Applied Mathematics Letters, 25, 5, 902-906 (2012) · Zbl 1241.54034 [9] Aydi, H.; Karapinar, E.; Lakzian, H., Fixed point results on a class of generalized metric spaces, Mathematical Sciences, 6, 1, article 46, 1-6 (2012) · Zbl 1271.54072 [10] Bilgili, N.; Karapinar, E.; Turkoglu, D., A note on common fixed points for \((\psi, \alpha, \beta)\)-weakly contractive mappings in generalized metric spaces, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1469.54065 [11] Chen, C.-M.; Sun, W. Y., Periodic points for the weak contraction mappings in complete generalized metric spaces, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1457.54033 [12] Erhan, I.; Karapinar, E.; Sekulić, T., Fixed points of \(\left(\psi, \phi\right)\) contractions on rectangular metric spaces, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1388.54028 [13] Miheţ, D., On Kannan fixed point principle in generalized metric spaces, The Journal of Nonlinear Science and Its Applications, 2, 2, 92-96 (2009) · Zbl 1171.54032 [14] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(\alpha-\psi \)-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 [15] Ali, M. U.; Kamran, T.; Karapinar, E., \( \left(\alpha, \psi, \xi\right)\)-contractive multivalued mappings, Fixed Point Theory and Applications, 2014 (2014) · Zbl 1347.54063 [16] Jleli, M.; Karapınar, E.; Samet, B., Best proximity points for generalized \(\left(\alpha, \psi\right)\)-proximal contractive type mappings, Journal of Applied Mathematics, 2013 (2013) · Zbl 1266.47077 [17] Jleli, M.; Karapınar, E.; Samet, B., Fixed point results for \(\alpha - \psi_\lambda\) contractions on gauge spaces and applications, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.54070 [18] Karapınar, E.; Samet, B., Generalized \(\alpha-\psi \)-contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, 2012 (2012) · Zbl 1252.54037 [19] Mohammadi, B.; Rezapour, S.; Shahzad, N., Some results on fixed points of \(\alpha-\psi \)-Ciric generalized multifunctions, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1423.54090 [20] Bianchini, R. M.; Grandolfi, M., Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico, ATTI Della Accademia Nazionale Dei Lincei, 45, 212-216 (1968) · Zbl 0205.27202 [21] Proinov, P. D., A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Analysis: Theory, Methods and Applications, 67, 8, 2361-2369 (2007) · Zbl 1130.54021 [22] Proinov, P. D., New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, Journal of Complexity, 26, 1, 3-42 (2010) · Zbl 1185.65095 [23] Rus, I. A., Generalized Contractions and Applications, 198 (2001), Cluj-Napoca, Romania: Cluj University Press, Cluj-Napoca, Romania · Zbl 0968.54029 [24] Berzig, M.; Rus, M., Fixed point theorems for \(α\)-contractive mappings of Meir-Keeler type and applications · Zbl 1311.54036 [25] Berzig, M.; Karapınar, E., Fixed point results for \(\left(\alpha \psi - \alpha \phi\right)\)-contractive mappings for a generalized altering distance, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1469.54063 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.