×

zbMATH — the first resource for mathematics

Traveling wave solutions and infinite-dimensional linear spaces of multiwave solutions to Jimbo-Miwa equation. (English) Zbl 07023409
Summary: The traveling wave solutions and multiwave solutions to (3 + 1)-dimensional Jimbo-Miwa equation are investigated in this paper. As a result, besides the exact bounded solitary wave solutions, we obtain the existence of two families of bounded periodic traveling wave solutions and their implicit formulas by analysis of phase portrait of the corresponding traveling wave system. We derive the exact 2-wave solutions and two families of arbitrary finite \(N\)-wave solutions by studying the linear space of its Hirota bilinear equation, which confirms that the (3 + 1)-dimensional Jimbo-Miwa equation admits multiwave solutions of any order and is completely integrable.

MSC:
35 Partial differential equations
37 Dynamical systems and ergodic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] He, J.-H.; Wu, X.-H., Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, 30, 3, 700-708, (2006) · Zbl 1141.35448
[2] Parkes, E. J.; Duffy, B. R., An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Computer Physics Communications, 98, 3, 288-300, (1996) · Zbl 0948.76595
[3] Wang, M.; Zhou, Y.; Li, Z., Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Physics Letters A, 216, 1–5, 67-75, (1996) · Zbl 1125.35401
[4] Feng, Z., Comment on ‘on the extended applications of homogeneous balance method’, Applied Mathematics and Computation, 158, 2, 593-596, (2004) · Zbl 1061.35108
[5] Zhang, S.; Xia, T., A generalized new auxiliary equation method and its applications to nonlinear partial differential equations, Physics Letters A, 363, 5-6, 356-360, (2007) · Zbl 1197.35008
[6] Zhang, H., New exact travelling wave solutions of nonlinear evolution equation using a sub-equation, Chaos, Solitons & Fractals, 39, 2, 873-881, (2009) · Zbl 1197.35257
[7] Ma, W. X., Travelling wave solutions to a seventh order generalized KdV equation, Physics Letters A, 180, 3, 221-224, (1993)
[8] Yan, C., A simple transformation for nonlinear waves, Physics Letters A, 224, 1-2, 77-84, (1996) · Zbl 1037.35504
[9] Wazwaz, A.-M., A sine-cosine method for handling nonlinear wave equations, Mathematical and Computer Modelling, 40, 5-6, 499-508, (2004) · Zbl 1112.35352
[10] Lan, H. B.; Wang, K. L., Exact solutions for two nonlinear equations. I, Journal of Physics A. Mathematical and General, 23, 17, 3923-3928, (1990) · Zbl 0718.35020
[11] Parkes, E. J.; Duffy, B. R.; Abbott, P. C., The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Physics Letters A, 295, 5-6, 280-286, (2002) · Zbl 1052.35143
[12] Cai, G. L.; Wang, Q. C.; Huang, J. J., A modified F-expansion method for solving breaking soliton equation, International Journal of Nonlinear Science, 2, 122-128, (2006)
[13] Hereman, W.; Zhuang, W., Symbolic computation of solitons with Macsyma, Computational and Applied Mathematics, II (Dublin, 1991), 287-296, (1992), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0765.35048
[14] Kudryashov, N. A., Seven common errors in finding exact solutions of nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation, 14, 9-10, 3507-3529, (2009) · Zbl 1221.35342
[15] Zhang, L.; Huo, X., On the exp-function method for constructing travelling wave solutions of nonlinear equations, Nonlinear and Modern Mathematical Physics: Proceedings of the First International Workshop, 1212, 280-285, (2010), Melville, NY, USA: American Institute of Physics, Melville, NY, USA · Zbl 1216.35109
[16] Li, J. B., Singular Traveling Wave Equations: Bifurcations and Exact Solutions, (2013), Beijing, China: Science Press, Beijing, China
[17] Zhang, L.; Chen, L.-Q.; Huo, X., The effects of horizontal singular straight line in a generalized nonlinear Klein-Gordon model equation, Nonlinear Dynamics, 72, 4, 789-801, (2013) · Zbl 1284.35359
[18] Hirota, R., The Direct Method in Soliton Theory. The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, xii+200, (2004), Cambridge, Mass, USA: Cambridge University Press, Cambridge, Mass, USA · Zbl 1099.35111
[19] Hietarinta, J., Hirota’s bilinear method and soliton solutions, Physics AUC, 15, part 1, 31-37, (2005)
[20] Ye, Y.; Wang, L.; Chang, Z.; He, J., An efficient algorithm of logarithmic transformation to Hirota bilinear form of KdV-type bilinear equation, Applied Mathematics and Computation, 218, 5, 2200-2209, (2011) · Zbl 1416.65385
[21] Zhou, Z.; Fu, J.; Li, Z., An implementation for the algorithm of Hirota bilinear form of PDE in the Maple system, Applied Mathematics and Computation, 183, 2, 872-877, (2006) · Zbl 1110.65098
[22] Zhou, Z.; Fu, J.; Li, Z., Maple packages for computing Hirota’s bilinear equation and multisoliton solutions of nonlinear evolution equations, Applied Mathematics and Computation, 217, 1, 92-104, (2010) · Zbl 1205.65281
[23] Yang, X.-D.; Ruan, H.-Y., A Maple package on symbolic computation of Hirota bilinear form for nonlinear equations, Communications in Theoretical Physics, 52, 5, 801-807, (2009) · Zbl 1186.35194
[24] Hietarinta, J., A search for bilinear equations passing Hirota’s three-soliton condition. II. mKdV-type bilinear equations, Journal of Mathematical Physics, 28, 9, 2094-2101, (1987) · Zbl 0658.35081
[25] Hietarinta, J., A search for bilinear equations passing Hirota’s three-soliton condition. III. Sine-Gordon-type bilinear equations, Journal of Mathematical Physics, 28, 11, 2586-2592, (1987) · Zbl 0658.35082
[26] Hietarinta, J., A search for bilinear equations passing Hirota’s three-soliton condition. IV. Complex bilinear equations, Journal of Mathematical Physics, 29, 3, 628-635, (1988) · Zbl 0684.35082
[27] Ma, W.-X.; Huang, T.; Zhang, Y., A multiple exp-function method for nonlinear differential equations and its application, Physica Scripta, 82, 6, (2010) · Zbl 1219.35209
[28] Ma, W.-X.; Strampp, W., Bilinear forms and Bäcklund transformations of the perturbation systems, Physics Letters A, 341, 5-6, 441-449, (2005) · Zbl 1171.37332
[29] Ma, W.-X.; Zhou, R.; Gao, L., Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in \((2 + 1)\) dimensions, Modern Physics Letters A, 24, 21, 1677-1688, (2009) · Zbl 1168.35426
[30] Ma, W.-X.; Fan, E., Linear superposition principle applying to Hirota bilinear equations, Computers & Mathematics with Applications, 61, 4, 950-959, (2011) · Zbl 1217.35164
[31] Ma, W.-X.; Zhang, Y.; Tang, Y.; Tu, J., Hirota bilinear equations with linear subspaces of solutions, Applied Mathematics and Computation, 218, 13, 7174-7183, (2012) · Zbl 1245.35109
[32] Ma, W. X., Generalized bilinear differential equations, Studies in Nonlinear Sciences, 2, 4, 140-144, (2011)
[33] Jimbo, M.; Miwa, T., Solitons and infinite-dimensional Lie algebras, Publications of the Research Institute for Mathematical Sciences, 19, 3, 943-1001, (1983) · Zbl 0557.35091
[34] Ma, W.-X.; Lee, J.-H., A transformed rational function method and exact solutions to the \(3 + 1\) dimensional Jimbo-Miwa equation, Chaos, Solitons & Fractals, 42, 3, 1356-1363, (2009) · Zbl 1198.35231
[35] Li, Z.; Dai, Z., Abundant new exact solutions for the \((3 + 1)\)-dimensional Jimbo-Miwa equation, Journal of Mathematical Analysis and Applications, 361, 2, 587-590, (2010) · Zbl 1179.35095
[36] Kudryashov, N. A.; Sinelshchikov, D. I., A note on “Abundant new exact solutions for the \((3 + 1)\)-dimensional Jimbo-Miwa equation, Journal of Mathematical Analysis and Applications, 371, 1, 393-396, (2010) · Zbl 1204.35071
[37] Chow, S. N.; Hale, J. K., Methods of Bifurcation Theory, (1981), New York, NY, USA: Springer, New York, NY, USA
[38] Wazwaz, A.-M., Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations, Applied Mathematics and Computation, 203, 2, 592-597, (2008) · Zbl 1154.65366
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.