Zhang, Xuemei Parameter dependence of positive solutions for second-order singular Neumann boundary value problems with impulsive effects. (English) Zbl 1474.34066 Abstr. Appl. Anal. 2014, Article ID 968792, 6 p. (2014). Summary: The author considers the Neumann boundary value problem \(-y''(t)+\mathbf My(t)=\lambda\omega(t)f(t,y(t))\), \(t\in J\), \(t\neq t_k\), \(-\Delta y'|_{t=t_k}=\lambda I_k(t_k,y(t_k))\), \(k=1,2,\dots,m\), \(y'(0)=y'(1)=0\) and establishes the dependence results of the solution on the parameter \(\lambda\), which cover equations without impulsive effects and are compared with some recent results by Nieto and O’Regan. Cited in 2 Documents MSC: 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 34B37 Boundary value problems with impulses for ordinary differential equations PDFBibTeX XMLCite \textit{X. Zhang}, Abstr. Appl. Anal. 2014, Article ID 968792, 6 p. (2014; Zbl 1474.34066) Full Text: DOI OA License References: [1] Benchohra, M.; Henderson, J.; Ntouyas, S., Impulsive Differential Equations and Inclusions. Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications, xiv+366 (2006), New York, NY, USA: Hindawi Publishing Corporation, New York, NY, USA · Zbl 1130.34003 · doi:10.1155/9789775945501 [2] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations, x+462 (1995), River Edge, NJ, USA: World Scientific Publishing, River Edge, NJ, USA · Zbl 0837.34003 · doi:10.1142/9789812798664 [3] Lakshmikantham, V.; Baĭnov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations. Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6, xii+273 (1989), Teaneck, NJ, USA: World Scientific, Teaneck, NJ, USA · Zbl 0719.34002 · doi:10.1142/0906 [4] Gao, S.; Chen, L.; Nieto, J. J.; Torres, A., Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24, 6037-6045 (2006) · doi:10.1016/j.vaccine.2006.05.018 [5] Prado, A. F. B. A., Bi-impulsive control to build a satellite constellation, Nonlinear Dynamics and Systems Theory, 5, 2, 169-175 (2005) · Zbl 1128.70015 [6] Li, W.; Li, Q.; Liu, X.; Cui, F., Principal and nonprincipal solutions of impulsive dynamic equations with applications, The Journal of Applied Analysis and Computation, 2, 4, 431-440 (2012) · Zbl 1319.34159 [7] Liu, Y.; O’Regan, D., Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations, Communications in Nonlinear Science and Numerical Simulation, 16, 4, 1769-1775 (2011) · Zbl 1221.34072 · doi:10.1016/j.cnsns.2010.09.001 [8] Ma, R.; Yang, B.; Wang, Z., Positive periodic solutions of first-order delay differential equations with impulses, Applied Mathematics and Computation, 219, 11, 6074-6083 (2013) · Zbl 1282.34073 · doi:10.1016/j.amc.2012.12.020 [9] Hao, X.; Liu, L.; Wu, Y., Positive solutions for second order impulsive differential equations with integral boundary conditions, Communications in Nonlinear Science and Numerical Simulation, 16, 1, 101-111 (2011) · Zbl 1221.34050 · doi:10.1016/j.cnsns.2010.04.007 [10] Feng, M.; Xie, D., Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations, Journal of Computational and Applied Mathematics, 223, 1, 438-448 (2009) · Zbl 1159.34022 · doi:10.1016/j.cam.2008.01.024 [11] Zhang, X.; Feng, M.; Ge, W., Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces, Journal of Computational and Applied Mathematics, 233, 8, 1915-1926 (2010) · Zbl 1185.45017 · doi:10.1016/j.cam.2009.07.060 [12] Yan, J., Existence of positive periodic solutions of impulsive functional differential equations with two parameters, Journal of Mathematical Analysis and Applications, 327, 2, 854-868 (2007) · Zbl 1114.34052 · doi:10.1016/j.jmaa.2006.04.018 [13] Liu, X.; Guo, D., Method of upper and lower solutions for second-order impulsive integro-differential equations in a Banach space, Computers & Mathematics with Applications, 38, 3-4, 213-223 (1999) · Zbl 0939.45004 · doi:10.1016/S0898-1221(99)00196-0 [14] Guo, D., Extremal solutions for \(n\) th-order impulsive integro-differential equations on the half-line in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications A, 65, 3, 677-696 (2006) · Zbl 1098.45013 · doi:10.1016/j.na.2005.09.032 [15] Guo, D., Variational approach to a class of impulsive differential equations, Boundary Value Problems, 2014, article 37 (2014) · Zbl 1319.34047 · doi:10.1186/1687-2770-2014-37 [16] Zhou, J.; Li, Y., Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, Nonlinear Analysis. Theory, Methods & Applications A, 71, 7-8, 2856-2865 (2009) · Zbl 1175.34035 · doi:10.1016/j.na.2009.01.140 [17] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Analysis. Real World Applications, 10, 2, 680-690 (2009) · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022 [18] Xiao, J.; Nieto, J. J.; Luo, Z., Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 426-432 (2012) · Zbl 1251.34046 · doi:10.1016/j.cnsns.2011.05.015 [19] Tian, Y.; Ge, W., Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Analysis. Theory, Methods & Applications A, 72, 1, 277-287 (2010) · Zbl 1191.34038 · doi:10.1016/j.na.2009.06.051 [20] Feng, M.; Li, X.; Xue, C., Multiple positive solutions for impulsive singular boundary value problems with integral boundary conditions, International Journal of Open Problems in Computer Science and Mathematics, 2, 4, 546-561 (2009) · Zbl 1210.34033 [21] Sun, J.; Chen, H.; Yang, L., The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method, Nonlinear Analysis. Theory, Methods & Applications A, 73, 2, 440-449 (2010) · Zbl 1198.34037 · doi:10.1016/j.na.2010.03.035 [22] Ning, P.; Huan, Q.; Ding, W., Existence result for impulsive differential equations with integral boundary conditions, Abstract and Applied Analysis, 2013 (2013) · Zbl 1285.34017 · doi:10.1155/2013/134691 [23] Guo, D. J.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones, viii+275 (1988), NewYork, NY, USA: Academic Press, NewYork, NY, USA · Zbl 0661.47045 [24] Liu, X.; Li, Y., Positive solutions for Neumann boundary value problems of second-order impulsive differential equations in Banach spaces, Abstract and Applied Analysis, 2012 (2012) · Zbl 1244.34044 · doi:10.1155/2012/401923 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.