Soleymani, F.; Sharifi, M.; Shateyi, S.; Khaksar Haghani, F. An algorithm for computing geometric mean of two Hermitian positive definite matrices via matrix sign. (English) Zbl 1474.65123 Abstr. Appl. Anal. 2014, Article ID 978629, 6 p. (2014). Summary: Using the relation between a principal matrix square root and its inverse with the geometric mean, we present a fast algorithm for computing the geometric mean of two Hermitian positive definite matrices. The algorithm is stable and possesses a high convergence order. Some experiments are included to support the proposed computational algorithm. Cited in 8 Documents MSC: 65F60 Numerical computation of matrix exponential and similar matrix functions 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory 15B48 Positive matrices and their generalizations; cones of matrices Software:mftoolbox; Matrix Means Toolbox PDF BibTeX XML Cite \textit{F. Soleymani} et al., Abstr. Appl. Anal. 2014, Article ID 978629, 6 p. (2014; Zbl 1474.65123) Full Text: DOI References: [1] Pusz, W.; Woronowicz, S. L., Functional calculus for sesquilinear forms and the purification map, Reports on Mathematical Physics, 8, 2, 159-170 (1975) · Zbl 0327.46032 [2] Lawson, J. D.; Lim, Y., The geometric mean, matrices, metrics, and more, The American Mathematical Monthly, 108, 9, 797-812 (2001) · Zbl 1040.15016 [3] Bini, D. A.; Iannazzo, B., A note on computing matrix geometric means, Advances in Computational Mathematics, 35, 2-4, 175-192 (2011) · Zbl 1293.65068 [4] Bhatia, R., Positive Definite Matrices, Princeton Series in Applied Mathematics (2007), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 1133.15017 [5] Iannazzo, B.; Meini, B., The palindromic cyclic reduction and related algorithms, Calcolo (2014) · Zbl 1316.65048 [6] Hoste, J., Mathematica Demystified (2009), New York, NY, USA: McGraw-Hill, New York, NY, USA [7] Higham, N. J., Functions of Matrices: Theory and Computation (2008), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA · Zbl 1167.15001 [8] Gutiérrez, J. M.; Hernández, M. A., A family of Chebyshev-Halley type methods in Banach spaces, Bulletin of the Australian Mathematical Society, 55, 1, 113-130 (1997) · Zbl 0893.47043 [9] Lin, R. F.; Ren, H. M.; Šmarda, Z.; Wu, Q. B.; Khan, Y.; Hu, J. L., New families of third-order iterative methods for finding multiple roots, Journal of Applied Mathematics, 2014 (2014) · Zbl 1442.65088 [10] Soleymani, F., Some high-order iterative methods for finding all the real zeros, Thai Journal of Mathematics, 12, 2, 313-327 (2014) · Zbl 1306.41006 [11] Soleymani, F.; Shateyi, S.; Özkum, G., An iterative solver in the presence and absence of multiplicity for nonlinear equations, The Scientific World Journal, 2013 (2013) [12] Soleymani, F.; Tohidi, E.; Shateyi, S.; Haghani, F. K., Some matrix iterations for computing matrix sign function, Journal of Applied Mathematics, 2014 (2014) · Zbl 1442.65079 [13] Soleymani, F.; Stanimirović, P. S.; Shateyi, S.; Khaksar Haghani, F., Approximating the matrix sign function using a novel iterative method, Abstract and Applied Analysis, 2014 (2014) · Zbl 1470.65082 [14] Kenney, C.; Laub, A. J., Rational iterative methods for the matrix sign function, SIAM Journal on Matrix Analysis and Applications, 12, 2, 273-291 (1991) · Zbl 0725.65048 [15] Denman, E. D.; Beavers, A. N., The matrix sign function and computations in systems, Applied Mathematics and Computation, 2, 1, 63-94 (1976) · Zbl 0398.65023 [16] Iannazzo, B., The geometric mean of two matrices from a computational viewpoint · Zbl 1374.65083 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.