Blasco, Oscar; Zaragoza-Berzosa, Carme Multipliers on generalized mixed norm sequence spaces. (English) Zbl 1474.42028 Abstr. Appl. Anal. 2014, Article ID 983273, 15 p. (2014). Summary: Given \(1 \leq p\), \(q \leq \infty\) and sequences of integers \((n_k)_k\) and \((n_k')_k\) such that \(n_k \leq n_k' \leq n_{k + 1}\), the generalized mixed norm space \(\ell^{\mathcal{I}}(p, q)\) is defined as those sequences \((a_j)_j\) such that \(((\sum_{j \in I_k} |a_j|^p)^{1 / p})_k \in \ell^q\) where \(I_k = \{j \in \mathbb N_0 \text{s.t.} n_k \leq j < n_k' \}\), \(k \in \mathbb N_0\). The necessary and sufficient conditions for a sequence \(\lambda = (\lambda_j)_j\) to belong to the space of multipliers \((\ell^{\mathcal{I}}(r, s), \ell^{\mathcal{J}}(u, v))\), for different sequences \(\mathcal{I}\) and \(\mathcal{J}\) of intervals in \(\mathbb N_0\), are determined. Cited in 3 Documents MSC: 42A45 Multipliers in one variable harmonic analysis 40A05 Convergence and divergence of series and sequences × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Kellogg, C. N., An extension of the Hausdorff-Young theorem, The Michigan Mathematical Journal, 18, 2, 121-127 (1971) · Zbl 0197.38702 · doi:10.1307/mmj/1029000635 [2] Hardy, G. H.; Littlewood, J. E., Some properties of fractional integrals. II, Mathematische Zeitschrift, 34, 1, 403-439 (1932) · Zbl 0003.15601 · doi:10.1007/BF01180596 [3] Hardy, G. H.; Littlewood, J. E., Theorems concerning mean values of analytic or harmonic functions, The Quarterly Journal of Mathematics, 12, 221-256 (1941) · Zbl 0060.21702 [4] Flett, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, Journal of Mathematical Analysis and Applications, 38, 746-765 (1972) · Zbl 0246.30031 · doi:10.1016/0022-247X(72)90081-9 [5] Flett, T. M., Lipschitz spaces of functions on the circle and the disc, Journal of Mathematical Analysis and Applications, 39, 125-158 (1972) · Zbl 0253.46084 · doi:10.1016/0022-247X(72)90230-2 [6] Flett, T. M., On the rate of growth of mean values of holomorphic and harmonic functions, Proceedings of the London Mathematical Society, 20, 749-768 (1970) · Zbl 0211.39203 [7] Sledd, W. T., Some results about spaces of analytic functions introduced by Hardy and Littlewood, Journal of the London Mathematical Society, 2, 328-336 (1974) · Zbl 0295.42003 [8] Sledd, W. T., On multipliers of \(H^p\) spaces, Indiana University Mathematics Journal, 27, 5, 797-803 (1978) · Zbl 0395.42008 · doi:10.1512/iumj.1978.27.27052 [9] Pavlović, M., Mixed norm spaces of analytic and harmonic functions. I, Publications de l’Institut Mathématique, 40, 54, 117-141 (1986) · Zbl 0619.46022 [10] Pavlović, M., Mixed norm spaces of analytic and harmonic functions. II, Publications de l’Institut Mathématique, 41, 55, 97-110 (1987) · Zbl 0638.46017 [11] Campbell, D. M.; Leach, R. J., A survey of \(H^p\) multipliers as related to classical function theory, Complex Variables, 3, 1-3, 85-111 (1984) · Zbl 0512.30024 · doi:10.1080/17476938408814065 [12] Osikiewicz, B., Multipliers of Hardy spaces, Quaestiones Mathematicae, 27, 1, 57-73 (2004) · Zbl 1065.42011 · doi:10.2989/16073600409486084 [13] Blasco, O., Operators on weighted Bergman spaces \((0 \operatorname{LTHEXA} p \leq 1)\) and applications, Duke Mathematical Journal, 66, 3, 443-467 (1992) · Zbl 0815.47035 · doi:10.1215/S0012-7094-92-06614-2 [14] Blasco, O., Multipliers on weighted Besov spaces of analytic functions, Banach spaces. Banach spaces, Contemporary Mathematics, 144, 23-33 (1993) · Zbl 0838.42002 · doi:10.1090/conm/144/1209444 [15] Blasco, O., Multipliers on spaces of analytic functions, Canadian Journal of Mathematics, 20, 1-21 (1994) [16] Kwessi, E.; De Souza, G.; Abebe, A.; Aulaskari, R., Characterization of lacunary functions in weighted Bergman-Besov-Lipschitz spaces, Complex Variables and Elliptic Equations, 58, 2, 157-162 (2013) · Zbl 1266.42011 · doi:10.1080/17476933.2011.559544 [17] Zygmund, A., Trigonometric Series. Trigonometric Series, Cambridge Mathematical Library, 1-2 (2002), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1084.42003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.