Möhle, Martin A spectral decomposition for the block counting process and the fixation line of the beta(3,1)-coalescent. (English) Zbl 1406.60104 Electron. Commun. Probab. 23, Paper No. 102, 15 p. (2018). Summary: A spectral decomposition for the generator of the block counting process of the \(\beta (3,1)\)-coalescent is provided. This decomposition is strongly related to Riordan matrices and particular Fuss-Catalan numbers. The result is applied to obtain formulas for the distribution function and the moments of the absorption time of the \(\beta (3,1)\)-coalescent restricted to a sample of size \(n\). We also provide the analog spectral decomposition for the fixation line of the \(\beta (3,1)\)-coalescent. The main tools in the proofs are generating functions and Siegmund duality. Generalizations to the \(\beta (a,1)\)-coalescent with parameter \(a\in (0,\infty )\) are discussed leading to fractional differential or integral equations. MSC: 60J10 Markov chains (discrete-time Markov processes on discrete state spaces) 60J27 Continuous-time Markov processes on discrete state spaces 05C05 Trees 92D15 Problems related to evolution Keywords:absorption time; beta coalescent; fractional differential equation; Fuss-Catalan numbers; generating function; Riordan matrix; siegmund duality; spectral decomposition PDFBibTeX XMLCite \textit{M. Möhle}, Electron. Commun. Probab. 23, Paper No. 102, 15 p. (2018; Zbl 1406.60104) Full Text: DOI Euclid References: [1] Bolthausen, E. and Sznitman, A.-S.: On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys.197, (1998), 247-276. · Zbl 0927.60071 · doi:10.1007/s002200050450 [2] Donnelly, P. and Kurtz, T. G.: A countable representation of the Fleming-Viot measure-valued diffusion. Ann Probab.24, (1996), 698-742. · Zbl 0869.60074 · doi:10.1214/aop/1039639359 [3] Donnelly P. and Kurtz, T. G.: Particle representations for measure-valued population models. Ann. Probab.27, (1999), 166-205. · Zbl 0956.60081 · doi:10.1214/aop/1022677258 [4] Gaiser, F. and Möhle, M.: On the block counting process and the fixation line of exchangeable coalescents. ALEA Lat. Am. J. Probab. Math. Stat.13, (2016), 809-833. · Zbl 1346.60124 [5] Gnedin, A., Iksanov, A., Marynych, A. and Möhle, M.: On asymptotics of the beta coalescents. Adv. Appl. Probab.46, (2014), 496-515. · Zbl 1323.60021 · doi:10.1239/aap/1401369704 [6] Hénard, O.: The fixation line in the \(Λ \)-coalescent. Ann. Appl. Probab.25, (2015), 3007-3032. · Zbl 1325.60124 [7] Hsu, L. C. and Shiue, P. J.-S.: A unified approach to generalized Stirling numbers. Adv. in Appl. Math.20, (1998), 366-384. · Zbl 0913.05006 · doi:10.1006/aama.1998.0586 [8] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Mathematics Studies 204, Elsevier, North Holland, 2006. · Zbl 1092.45003 [9] Kingman, J. F. C.: The coalescent. Stochastic Process. Appl.13, (1982), 235-248. · Zbl 0491.60076 [10] Kukla, J. and Möhle, M.: On the block counting process and the fixation line of the Bolthausen-Sznitman coalescent. Stochastic Process. Appl.128, (2018), 939-962. · Zbl 1390.60089 · doi:10.1016/j.spa.2017.06.012 [11] Kukla, J. and Pitters, H. H.: A spectral decomposition for the Bolthausen-Sznitman coalescent and the Kingman coalescent. Electron. Commun. Probab.20, paper no. 87, (2015), 1-13. · Zbl 1333.60167 · doi:10.1214/ECP.v20-4612 [12] Liggett, T. M.: Interacting Particle Systems. Reprint of the 1985 original. Classics in Mathematics, Springer, Berlin, 2005. · Zbl 1103.82016 [13] Miller, K. S. and Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York, 1993. · Zbl 0789.26002 [14] Mlotkowski, W.: Fuss-Catalan numbers in noncommutative probability. Documenta Mathematica15, (2010), 939-955. · Zbl 1213.44004 [15] Möhle, M.: On strictly monotone Markov chains with constant hitting probabilities and applications to a class of beta coalescents. Markov Process. Related Fields24, (2018), 107-130. · Zbl 1417.60063 [16] Möhle, M. and Pitters, H.: A spectral decomposition for the block counting process of the Bolthausen-Sznitman coalescent. Electron. Commun. Probab.19, paper no. 47, (2014), 1-11. · Zbl 1334.60157 · doi:10.1214/ECP.v19-3464 [17] Pitman, J.: Coalescents with multiple collisions. Ann. Probab.27, (1999), 1870-1902. · Zbl 0963.60079 · doi:10.1214/aop/1022874819 [18] Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, Volume 198. Academic Press, 1999. · Zbl 0924.34008 [19] Riordan, J.: Combinatorial Identities. Krieger Publishing Co., Huntington, New York, 1979. · Zbl 0194.00502 [20] Sagitov, S.: The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab.36, (1999), 1116-1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759 [21] Shapiro, L. W., Getu, S., Woan, W.-J. and Woodson, L.: The Riordan group. Disc. Appl. Math.34, (1991), 229-239. · Zbl 0754.05010 · doi:10.1016/0166-218X(91)90088-E [22] Sprugnoli, R.: Riordan arrays and combinatorial sums. Discrete Math.132, (1994), 267-290. · Zbl 0814.05003 · doi:10.1016/0012-365X(92)00570-H [23] Siegmund, D.: The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes. Ann. Probab.4, (1976), 914-924. · Zbl 0364.60109 · doi:10.1214/aop/1176995936 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.