Galkowski, Jeffrey The quantum Sabine law for resonances in transmission problems. (English) Zbl 1407.35149 Pure Appl. Anal. 1, No. 1, 27-100 (2019). Summary: We prove a quantum version of the Sabine law from acoustics describing the location of resonances in transmission problems. This work extends the work of the author to a broader class of systems. Our main applications are to scattering by transparent obstacles, scattering by highly frequency-dependent delta potentials, and boundary stabilized wave equations. We give a sharp characterization of the resonance-free regions in terms of dynamical quantities. In particular, we relate the imaginary part of resonances, or generalized eigenvalues, to the chord lengths and reflectivity coefficients for the ray dynamics, thus proving a quantum version of the Sabine law. Cited in 5 Documents MSC: 35P20 Asymptotic distributions of eigenvalues in context of PDEs 35P25 Scattering theory for PDEs Keywords:transmission; resonances; boundary integral operators; transparent; scattering PDF BibTeX XML Cite \textit{J. Galkowski}, Pure Appl. Anal. 1, No. 1, 27--100 (2019; Zbl 1407.35149) Full Text: DOI arXiv OpenURL References: [1] 10.4153/CJM-2008-011-7 · Zbl 1162.35078 [2] 10.1137/0330055 · Zbl 0786.93009 [3] 10.1021/nl100569w [4] ; Bellassoued, Asymptot. Anal., 35, 257 (2003) [5] 10.1103/RevModPhys.87.61 [6] 10.1063/1.3277163 · Zbl 1309.35011 [7] 10.4310/MRL.1999.v6.n4.a2 · Zbl 0968.35035 [8] 10.1081/PDE-100107460 · Zbl 1086.35012 [9] 10.1016/0167-2789(94)00254-N [10] 10.1017/CBO9780511662195 [11] 10.1007/s00023-012-0159-y · Zbl 1246.83111 [12] ; Dyatlov, Ann. Sci. Éc. Norm. Supér. (4), 47, 371 (2014) [13] 10.1088/0951-7715/26/1/35 · Zbl 1278.81100 [14] 10.1016/B978-0-7506-5013-7.X5000-4 [15] 10.1090/fic/052/06 [16] 10.1090/pspum/077/2459890 [17] 10.1088/1751-8113/49/12/125205 · Zbl 1349.35262 [18] 10.1093/imrn/rnu179 · Zbl 1347.35188 [19] 10.1017/CBO9780511721441 [20] ; Guillemin, Geometric asymptotics. Mathematical Surveys, 14 (1977) · Zbl 0364.53011 [21] 10.1215/S0012-7094-81-04814-6 · Zbl 0462.58030 [22] 10.1016/j.jfa.2015.06.011 · Zbl 1327.31015 [23] 10.1007/s00220-004-1070-2 · Zbl 1054.58022 [24] ; Hörmander, The analysis of linear partial differential operators, III : Pseudodifferential operators. Grundlehren der Math. Wissenschaften, 274 (1985) · Zbl 0601.35001 [25] ; Hörmander, The analysis of linear partial differential operators, IV : Fourier integral operators. Grundlehren der Math. Wissenschaften, 275 (1985) · Zbl 0612.35001 [26] 10.1007/978-1-4757-3287-0 [27] 10.1353/ajm.2015.0027 · Zbl 1352.37108 [28] 10.1080/03605309508821119 · Zbl 0823.35108 [29] 10.2307/2001453 · Zbl 0686.58037 [30] 10.4310/jdg/1214437138 · Zbl 0492.53033 [31] 10.1007/BF01390317 · Zbl 0354.53033 [32] 10.1016/S0021-7824(00)00158-6 · Zbl 0963.35022 [33] ; Popov, Asymptot. Anal., 19, 253 (1999) [34] 10.1007/s002200050731 · Zbl 0951.35036 [35] 10.1007/BF00046615 [36] 10.1007/BF02392828 · Zbl 0989.35099 [37] 10.1007/978-1-4419-7052-7 · Zbl 1206.35003 [38] ; Vũ Ngọc, Systèmes intégrables semi-classiques : du local au global. Panoramas et Synthèses, 22 (2006) · Zbl 1118.37001 [39] 10.1080/00411458508211692 · Zbl 0614.35052 [40] 10.1090/gsm/138 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.