×

zbMATH — the first resource for mathematics

Scalar polynomial curvature invariants in the context of the Cartan-Karlhede algorithm. (English) Zbl 1411.83069
MSC:
83C80 Analogues of general relativity in lower dimensions
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58A15 Exterior differential systems (Cartan theory)
Software:
NP; NPspinor
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fonseca, J. B.; Sousa, F. C.; Romero, C., Equivalence of three-dimensional spacetimes, Class. Quantum Grav., (2008) · Zbl 1136.83032
[2] Milson, R.; Wylleman, L., Three-dimensional spacetimes of maximal order, Class. Quantum Grav. · Zbl 1269.83054
[3] Olver, P. J., Equivalence, Invariants and Symmetry, (1995), Cambridge University Press · Zbl 0837.58001
[4] M. A. H. MacCallum, Spacetime invariants and their uses, arXiv:1504.06857 [gr-qc].
[5] Brooks, D.; Chavy-Waddy, P. C.; Coley, A. A.; Forget, A.; Gregoris, D.; MacCallum, M. A. H.; McNutt, D. D., Cartan invariants and event horizon detection, Gen. Relativ. Gravit., 50, 4, 37, (2018) · Zbl 1392.83040
[6] Ehlers, J.; Butzer, P. L.; Feher, R. F., Christoffel’s Work on the Equivalence Problem for Riemannian Spaces and its Importance for Modern Field Theory of Physics, (1981), Birkhäuser-Verlag: Birkhäuser-Verlag, Basel
[7] Cartan, E., Leçons sur la Geómétrie des Espaces de Riemann, (1983), Mathematical Science Press: Mathematical Science Press, Brookline, MA
[8] Karlhede, A., A review of the geometrical equivalence of metrics in general relativity, Gen. Relativ. Gravit., 12, 693-707, (1980) · Zbl 0455.53023
[9] Karlhede, A., The equivalence problem, Gen. Relativ. Gravit., 38, 1109-1114, (2006) · Zbl 1145.53314
[10] Morgan, T.; Hall, G. S.; Perjes, Z., Three-dimensional space-times, Gen. Relativ. Gravit., 19, (1987) · Zbl 0629.53022
[11] Alieve, A. N.; Nutku, Y., Spinor formulation of topologically massive gravity, Class. Quantum. Grav., 12, 2913-2925, (1995) · Zbl 0839.53075
[12] Penrose, R.; Rindler, W., Spinors and Spacetime, 1 & 2, (1984), Cambridge University Press: Cambridge University Press, Cambridge
[13] Hervik, S.; Coley, A. A.; Pelavas, N., On spacetimes with constant scalar invariants, Class. Quantum. Grav., 23, 3053, (2006) · Zbl 1096.83057
[14] Coley, A.; Hervik, S.; Pelavas, N., Lorentzian spacetimes with constant curvature invariants in four dimensions, Class. Quantum Grav., 26, 12, 125011, (2009) · Zbl 1170.83442
[15] Coley, A.; Hervik, S.; Pelavas, N., Lorentzian spacetimes with constant curvature invariants in three dimensions, Class. Quantum Grav., 25, 2, 025008, (2008) · Zbl 1197.83082
[16] Coley, A.; Hervik, S.; Papadopoulos, G.; Pelavas, N., Kundt spacetimes, Class. Quantum Grav., 26, 10, 105016, (2009) · Zbl 1163.83360
[17] Carminati, J.; McLenaghan, R. G., Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys., 32, 3135-3140, (1991) · Zbl 0736.76081
[18] MacCallum, M.; Hoenselaers, C.; Stephani, H.; Kramer, D.; Herlt, E., Exact Solutions of Einstein’s Field Equations, (2003), Cambridge University Press · Zbl 1057.83004
[19] Coley, A. A.; MacDougall, A.; McNutt, D. D., Basis for scalar curvature invariants in three dimensions, Class. Quantum Grav. · Zbl 1306.83055
[20] Musoke, N. K.; McNutt, D. D.; Coley, A. A.; Brooks, D. A., On scalar curvature invariants in three dimensional spacetimes, Gen. Relativ. Gravit. · Zbl 1337.83086
[21] McNutt, D. D.; Page, D. N., Scalar polynomial curvature invariant vanishing on the event horizon of any black hole metric conformal to a static spherical metric, Phys. Rev. D, 95, 8, 084044, (2017)
[22] McNutt, D. D., Curvature invariant characterization of event horizons of four-dimensional black holes conformal to stationary black holes, Phys. Rev. D, 96, 10, 104022, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.