×

zbMATH — the first resource for mathematics

Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: a case of oligopeptide binding protein. (English) Zbl 1431.92042
Summary: Protein-ligand interactions are a necessary prerequisite for signal transduction, immunoreaction, and gene regulation. Protein-ligand interaction studies are important for understanding the mechanisms of biological regulation, and they provide a theoretical basis for the design and discovery of new drug targets. In this study, we analyzed the molecular interactions of protein-ligand which was docked by AutoDock 4.2 software. In AutoDock 4.2 software, we used a new search algorithm, hybrid algorithm of random drift particle swarm optimization and local search (LRDPSO), and the classical Lamarckian genetic algorithm (LGA) as energy optimization algorithms. The best conformations of each docking algorithm were subjected to molecular dynamic (MD) simulations to further analyze the molecular mechanisms of protein-ligand interactions. Here, we analyze the binding energy between protein receptors and ligands, the interactions of salt bridges and hydrogen bonds in the docking region, and the structural changes during complex unfolding. Our comparison of these complexes highlights differences in the protein-ligand interactions between the two docking methods. It also shows that salt bridge and hydrogen bond interactions play a crucial role in protein-ligand stability. The present work focuses on extracting the deterministic characteristics of docking interactions from their dynamic properties, which is important for understanding biological functions and determining which amino acid residues are crucial to docking interactions.
MSC:
92C40 Biochemistry, molecular biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yuriev, E.; Holien, J.; Ramsland, P. A., Improvements, trends, and new ideas in molecular docking: 2012-2013 in review, Journal of Molecular Recognition, 28, 10, 581-604, (2015)
[2] López-Camacho, E.; Godoy, M. J. G.; García-Nieto, J.; Nebro, A. J.; Aldana-Montes, J. F., Solving molecular flexible docking problems with metaheuristics: a comparative study, Applied Soft Computing, 28, 379-393, (2015)
[3] Di Muzio, E.; Toti, D.; Polticelli, F., DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina, Journal of Computer-Aided Molecular Design, 31, 2, 213-218, (2017)
[4] Sousa, S. F.; Cerqueira, N. M.; Fernandes, P. A.; Ramos, M. J., Virtual screening in drug design and development, Combinatorial Chemistry & High Throughput Screening, 13, 5, 442-453, (2010)
[5] Pereira, J. C.; Caffarena, E. R.; Santos, C. N. D., Boosting docking-based virtual screening with deep learning, Journal of Chemical Information and Modeling, 56, 12, 2495-2506, (2016)
[6] Shin, W. H.; Kim, J. K.; Kim, D. S.; Seok, C., GalaxyDock2: protein–ligand docking using beta-complex and global optimization, Journal of Computational Chemistry, 34, 30, 2647-2656, (2013)
[7] Heo, L.; Shin, W. H.; Lee, M. S.; Seok, C., GalaxySite: ligand-binding-site prediction by using molecular docking, Nucleic Acids Research, 42, 1, W210-W214, (2014)
[8] Guo, L.; Yan, Z.; Zheng, X.; Hu, L.; Yang, Y.; Wang, J., A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy, Journal of Molecular Modeling, 20, 7, 2251-2261, (2014)
[9] Bazgier, V.; Berka, K.; Otyepka, M.; Banáš, P., Exponential repulsion improves structural predictability of molecular docking, Journal of Computational Chemistry, 37, 28, 2485-2494, (2016)
[10] Fu, Y.; Chen, Z. G.; Sun, J., Random drift particle swarm optimisation algorithm for highly flexible protein-ligand docking, Journal of Theoretical Biology, 457, 180-189, (2018)
[11] Morris, G. M.; Goodsell, D. S.; Halliday, R. S., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, 19, 14, 1639-1662, (1998)
[12] Yoon, H. J.; Kim, H. J.; Mikami, B.; Yu, Y. G.; Lee, H. H., Crystal structure of a putative oligopeptide-binding periplasmic protein from a hyperthermophile, Extremophiles, 20, 5, 723-731, (2016)
[13] Wang, T.; Wade, R. C., Comparative binding energy (COMBINE) analysis of OppA-peptide complexes to relate structure to binding thermodynamics, Journal of Medicinal Chemistry, 45, 22, 4828-4837, (2002)
[14] Sleigh, S. H.; Seavers, P. R.; Wilkinson, A. J.; Ladbury, J. E.; Tame, J. R., Crystallographic and calorimetric analysis of peptide binding to OppA protein, Journal of Molecular Biology, 291, 2, 393-415, (1999)
[15] Maurer, M.; de Beer, S. B.; Oostenbrink, C., Calculation of relative binding free energy in the water-filled active site of oligopeptide-binding protein A, Molecules, 21, 4, 499, (2016)
[16] Chandel, T. I.; Zaman, M.; Khan, M. V., A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: an overview, International Journal of Biological Macromolecules, 106, 1115-1129, (2018)
[17] Linkuvienė, V.; Talibov, V. O.; Danielson, U. H.; Matulis, D., Introduction of intrinsic kinetics of protein-ligand interactions and their implications for drug design, Journal of Medicinal Chemistry, 61, 2292-2302, (2018)
[18] Fukunishi, Y.; Nakamura, H., Statistical estimation of the protein-ligand binding free energy based on direct protein-ligand interaction obtained by molecular dynamics simulation, Pharmaceuticals, 5, 10, 1064-1079, (2012)
[19] Colwell, L. J., Statistical and machine learning approaches to predicting protein-ligand interactions, Current Opinion in Structural Biology, 49, 123-128, (2018)
[20] Lee, S.; Barron, M. G., 3D-QSAR study of steroidal and azaheterocyclic human aromatase inhibitors using quantitative profile of protein-ligand interactions, Journal of Cheminformatics, 10, 1, 2, (2018)
[21] Becker, W.; Bhattiprolu, K. C.; Gubensäk, N.; Zangger, K., Investigating protein-ligand interactions by solution nuclear magnetic resonance spectroscopy, ChemPhysChem, 19, 8, 895-906, (2018)
[22] Solis, F. J.; Wets, R. J. B., Minimization by random search techniques, Mathematics of Operations Research, 6, 1, 19-30, (1981) · Zbl 0502.90070
[23] Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking, Journal of Molecular Biology, 267, 3, 727-748, (1997)
[24] Gardiner, E. J.; Willett, P.; Artymiuk, P. J., Protein docking using a genetic algorithm, Proteins: Structure, Function, and Genetics, 44, 1, 44-56, (2001)
[25] Sun, J.; Wu, X.; Palade, V.; Fang, W.; Shi, Y., Random drift particle swarm optimization algorithm: convergence analysis and parameter selection, Machine Learning, 101, 1–3, 345-376, (2015) · Zbl 1343.68224
[26] Clerc, M.; Kennedy, J., The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6, 1, 58-73, (2002)
[27] Chen, H. M.; Liu, B. F.; Huang, H. L., SODOCK: swarm optimization for highly flexible protein-ligand docking, Journal of Computational Chemistry, 28, 2, 612-623, (2007)
[28] Phillips, J. C.; Braun, R.; Wang, W., Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, 26, 16, 1781-1802, (2005)
[29] MacKerell, A. D.; Bashford, D.; Bellott, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins and nucleic acids, Journal of Physical Chemistry B, 102, 18, 3586-3616, (1998)
[30] Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics, Journal of Molecular Graphics, 14, 1, 33-38, (1996)
[31] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of simple potential functions for simulating liquid water, Journal of Chemical Physics, 79, 2, 926-935, (1983)
[32] Darden, T.; York, D.; Pedersen, L., Particle mesh Ewald: an N log (N) method for Ewald sums in large systems, Journal of Chemical Physics, 98, 12, 10089-10092, (1998)
[33] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics, 23, 3, 327-341, (1977)
[34] Hoover, W. G., Canonical dynamics: equilibrium phase-space distributions, Physical Review A, 31, 3, 1695-1697, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.