×

The singularly perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition. (English) Zbl 0703.35138

Let \(\Omega\) (\(\zeta\)) be the singularly perturbed domain of the form \(\Omega (\zeta)=D_ 1\cup D_ 2\cup Q(\zeta)\), where \(D_ 1\), \(D_ 2\) are bounded domains in \({\mathbb{R}}^ n\), \(\bar D_ 1\cap \bar D_ 2=\emptyset\) and Q(\(\zeta\)) \((\zeta >0)\) is a moving domain which partially degenerates into a line segment \(L\subset R\) as \(\zeta \to +0\). The author gives a characterization of the asymptotic behavior of the eigenfunctions of the Laplace operator in \(\Omega\) (\(\zeta\)) for the Neumann boundary condition on \(\partial \Omega (\zeta)\) as \(\zeta \to +0\). The rate of the degeneration of the function space \(L^ 2(\Omega)\zeta))\), which is associated with the partial degeneration of the domain \(\Omega\) (\(\zeta\)) is also given. The results obtained are applicable to the solutions of some reaction-diffusion equations and systems.
Reviewer: I.Zino

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35B25 Singular perturbations in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anně, C., Spectre du Laplacien et écrasement d’andes, Ann. Sci. École Norm. Sup., 20, 271-280 (1987) · Zbl 0634.58035
[2] Babuska, I.; Výborný, R., Continuous dependence of the eigenvalues on the domains, Czech. Math. J., 15, 169-178 (1965) · Zbl 0137.32302
[3] Beale, J. T., Scattering frequencies of resonators, C.P.A.M., XXVI, 549-563 (1973) · Zbl 0254.35094
[4] Chavel, I.; Feldman, E. A., Spectra of domains in compact manifolds, J. Funct. Anal., 30, 198-222 (1978) · Zbl 0392.58016
[5] Courant, R.; Hilbert, D., (Method of Mathematical Physics, Vol. I (1953), Wiley-Interscience: Wiley-Interscience New York) · Zbl 0729.00007
[6] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order (1977), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0361.35003
[7] Fukaya, K., Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87, 517-547 (1987) · Zbl 0589.58034
[8] Hale, J. K.; Vegas, J., A nonlinear parabolic equation with varying domain, Arch. Rational Mech. Anal., 86, 99-123 (1984) · Zbl 0569.35048
[9] Jimbo, S., Singular perturbation of domains and the structure of the solutions of semilinear elliptic equation, Lecture Notes Numer. Appl. Anal., 9, 105-117 (1987)
[10] Jimbo, S., (Proc. Japan Acad., 64 (1988)), 14-16, II · Zbl 0679.35010
[11] Jimbo, S., Singular perturbation of domains and semilinear elliptic equation, J. Fac. Sci. Univ. Tokyo, 35, 27-76 (1988) · Zbl 0667.35002
[12] Jimbo, S., Singular perturbation of domains and semilinear elliptic equation, II, J. Differential Equations, 75, 264-289 (1988) · Zbl 0667.35003
[13] Jimbo, S., Existence of the perturbed solutions of semilinear elliptic equation in the singularly perturbed domains, (Proc. Japan Acad., 64 (1988)), 33-36 · Zbl 0699.35076
[14] Kaizu, S., Upper semicontinuity of eigenvalues of selfadjoint operators defined on moving domains, (Proc. Japan Acad., 61 (1985)), 243-245 · Zbl 0584.35076
[15] Lobo-Hidalgo, M.; Sanchez-Palencia, E., Sur certaines propriétés spectrales des perturbations du domaine dans les problèmes aux limites, Comm. Partial Differential Equations, 4, 1085-1098 (1979) · Zbl 0422.35065
[16] Matano, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci. Kyoto Univ., 15, 401-454 (1979) · Zbl 0445.35063
[17] Matano, H.; Mimura, M., Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci. Kyoto Univ., 19, 1049-1079 (1983) · Zbl 0548.35063
[18] Ozawa, S., Singular variations of domains and eigenvalues of the Laplacian, Duke Math. J., 48, 769-778 (1981)
[19] Ozawa, S., Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo, 30, 259-277 (1983) · Zbl 0541.35061
[20] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations (1967), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0153.13602
[21] Rauch, J.; Taylor, M., Potential and scattering theory on wildly perturbed domains, J. Funct. Anal., 18, 27-59 (1975) · Zbl 0293.35056
[22] Sanchez-Palencia, E., Non-homogeneous media and vibrating theory, (Lecture Notes in Physics, Vol. 127 (1980), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0432.70002
[23] Vegas, J. M., Bifurcation caused by perturbing the domain in an elliptic equation, J. Differential Equations, 48, 189-226 (1983) · Zbl 0465.35075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.