zbMATH — the first resource for mathematics

The weak coupling limit as a quantum functional central limit. (English) Zbl 0703.60096
Summary: We show that, in the weak coupling limit, the laser model process converges weakly in the sense of the matrix elements to a quantum diffusion whose equation is explicitly obtained. We prove convergence, in the same sense, of the Heisenberg evolution of an observable of the system to the solution of a quantum Langevin equation. As a corollary of this result, via the quantum Feynman-Kac technique, one can recover previous results on the quantum master equation for reduced evolutions of open systems. When applied to some particular model (e.g. the free Boson gas) our results allow to interpret the Lamb shift as an Itô correction term and to express the pumping rates in terms of quantities related to the original Hamiltonian model.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
81S25 Quantum stochastic calculus
60F99 Limit theorems in probability theory
Full Text: DOI
[1] Accardi, L.: Quantum Markov chains. Proceedings, School of Mathematical Physics, University of Camerino 1974
[2] Accardi, L.: Quantum Stochastic Processes. Statistical Physics and Dynamical Systems. Progress in Physics, vol.10, pp. 285–302
[3] Accardi, L., Bach, A.: The harmonic oscillator as quantum central limit theorem of Bernoulli processes. Prob. Th. Rel. Fields (to appear)
[4] Accardi, L., Frigerio, A., Lewis, J. T.: Quantum stochastic processes. Publ. RIMS Kyoto University18, 97–133 (1982) · Zbl 0498.60099
[5] Accardi, L., Quaegebeur, J.: The Ito algebra of quantum Gaussian fields. J. Funct. Anal. (to appear) · Zbl 0669.60099
[6] Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit in the finite temperature case. Proceedings 2-d Ascona Conference on Stochastic Processes and Mathematical Physics, (to appear) · Zbl 0846.60098
[7] Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit for Fermion case. Submitted to J. Math. Phys. · Zbl 0735.60106
[8] Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit (II). Submitted to RIMS · Zbl 0846.60098
[9] Accardi, L., Frigerio, A., Lu, Y. G.: On the weak coupling limit problem. Lecture Notes in Mathematics, vol.1396, pp 20–58. Berlin, Heidelberg, New York: Springer 1989 · Zbl 0682.60092
[10] Applebaum, D., Frigerio, A.: Stationary dilations ofW *-dynamical Systems constructed via quantum stochastic differential equations. Pitman Research Notes In Math. Series 150 · Zbl 0616.46059
[11] Bratteli, O., Robinson, D. W.: Operator Algebra and Quantum Statistical Mechanics. Berlin, Heidelberg, New York: Springer 1979/81 · Zbl 0421.46048
[12] Davies, E. B.: Markovian master equation. Commun. Math. Phys.39, 91–110 (1974) · Zbl 0294.60080
[13] Davies, E. B.: Markovian master equations, III. Ann. Inst. H. PoincareB11, 265–273 (1975) · Zbl 0323.60062
[14] Davies, E. B.: Markovian master equations, II. Math. Ann.219, 147–158 (1976) · Zbl 0323.60061
[15] Davies, E. B.: Quantum Theory of Open Systems. London New York: Academic Press 1976 · Zbl 0388.46044
[16] Davies, E. B.: One-Parameter Semigroups. London and New York: Academic Press 1982 · Zbl 0498.47017
[17] Dell’ Antonio, G. F. (1983): Large time, small coupling behaviour of a quantum particle in a random field. Ann. Inst. Henri PoincaréXXXIX 339–384 (1983) · Zbl 0534.60099
[18] de Semedt, P., Durr, D., Lebowitz, J. L., Liverani, C.: Quantum system in contact with a thermal environment: Rigorous treatment of a simple modol. Commun. Math. Phys.120, 195–231 (1988) · Zbl 0657.60085
[19] Dümcke, R.: Convergence of multi-time correlation functions in the weak and singular coupling limit. J. Math. Phys.24, 311–315 (1983)
[20] Dümcke, R.: Markovian limits of multi-time correlation functions for open quantum systems. Lecture Notes in Mathematics, vol.1055, pp. 113–118. Berlin, Heidelberg, New York: Springer 1984
[21] Friedrichs, K. O.: On the perturbation of continuous spectra. Commun. Pure Appl. Math.1, 361–406 (1948) · Zbl 0031.31204
[22] Frigerio, A.: Construction of stationary quantum Markov processes through quantum stochastic calculus. Lecture Notes in Mathematics, vol.1136, pp. 207–222. Berlin, Heidelberg, New York: Springer 1988
[23] Frigerio, A.: Quantum Poisson processes: Physical motivations and applications. Lecture Notes in Mathematics, vol.1305, pp. 107–127. Berlin, Heidelberg, New York: Springer 1988 · Zbl 0635.60095
[24] Frigerio, A., Gorini, V.: N-level systems in contact with a singular reservoir, II. J. Math. Phys.17, 2123–2127 (1976)
[25] Frigerio, A., Gorini, V.: On stationary Markov dilations of quantum dynamical semigroups. Lecture Notes in Mathematics, vol.1055, pp. 119–125. Berlin, Heidelberg, New York: Springer 1984 · Zbl 0553.46044
[26] Gorini, V., Kossakowski, A., Sudarshan, E. C. G.: Completely positive dynamical semigroups on N-level systems. J. Math. Phys.17, 821–825 (1976)
[27] Hudson, R. L., Lindsay, J. M.: Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem. Lecture Notes in Mathematics, vol.1136, pp. 276–305. Berlin, Heidelberg, New York: Springer 1985 · Zbl 0569.60055
[28] Hudson, R. L., Parthasarathy, K. R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys.91, 301–323 (1984) · Zbl 0546.60058
[29] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys.48, 119–130 (1976) · Zbl 0343.47031
[30] Martin, Ph., Emch, G. G.: A rigorous model sustaining van Hove’s phenomenon. Helv. Phys. Acta48, 59–78 (1975)
[31] H. Maassen: The construction of continuous dilations by solving quantum stochastic differential equations. Preprint
[32] Palmer, P. F.: The singular coupling and weak coupling limits. J. Math. Phys.18, 527–529 (1977)
[33] Pulé, J. V.: The Bloch equations. Commun. Math. Phys.38, 241–256 (1974)
[34] Schurmann, M., von Waldenfels, W.: A central limit theorem on the free Lie group. Lecture Notes in Mathematics, vol.1303, pp. 300–318. Berlin, Heidelberg, New York: Springer 1988
[35] Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys.53, 569–615 (1980)
[36] Spohn, H., Lebowitz, J. L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys.38, 109–142 (1978)
[37] van Hove, L.: Quantum mechanical perturbations giving rise to a statistical transport equation. Physica21, 617–640 (1955) · Zbl 0065.19505
[38] Haken, H.: Laser theory. Berlin, Heidelberg, New York: Springer 1984 · Zbl 0544.94009
[39] von Waldenfels, W.: Ito solution of a quantum stochastic differential equation describing light emission and absorption. Lecture Notes in Mathematics, vol.1055. Berlin, Heidelberg, New York: Springer · Zbl 0532.60055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.