×

zbMATH — the first resource for mathematics

One possibility of multidimensional control system design. (English) Zbl 0703.93031
Summary: The aim of this paper is to draw attention to a general approach to multidimensional control system design. The system under consideration is assumed to be linear and discrete. The individual subsystems of the overall system are of the model following type. Control quality is secured by a quadratic cost function. Solution of high dimensional matrix Riccati equations is discussed.
MSC:
93B51 Design techniques (robust design, computer-aided design, etc.)
93C35 Multivariable systems, multidimensional control systems
93C05 Linear systems in control theory
93C55 Discrete-time control/observation systems
49N10 Linear-quadratic optimal control problems
Software:
EISPACK; RICPAC
PDF BibTeX XML Cite
Full Text: EuDML Link
References:
[1] W. F. Arnold, A. J. Laub: Generalized eigenproblem algorithm and software for algebraic Riccati equations. Proc. IEEE 72 (1984), 12, 1746-1754.
[2] J. G. F. Francis: The QR transformation, Parts I and II. Comput. J. 4 (1961-1962), 265-271 and 332-345. · Zbl 0104.34304
[3] B. S. Garbov, al.: Matrix Eigensystem Routines – EISPACK Guide Extension. (Lecture Notes in Computer Science 5.) Springer-Verlag, Berlin–Heidelberg–New York 1977. · Zbl 0368.65020
[4] V. Kučera: The discrete Riccati equation of optimal control. Kybernetika 8 (1972), 5, 430-447.
[5] A. J. Laub: A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Control AC-24 (1979), 6, 913-921. · Zbl 0427.65027
[6] A. J. Laub: Numerical linear algebra aspects of control design computations. IEEE Trans. Automat. Control AC-30 (1985), 2, 97-108. · Zbl 0551.93025
[7] T. Pappas A. J. Laub, N. R. Sandell: On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Trans. Automat. Control AC-25 (1980), 4, 631-641. · Zbl 0456.49010
[8] B. N. Parlett, C. Reinsch: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer. Math. 13 (1969), 293-304. · Zbl 0184.37703
[9] J. E. Potter: Matrix quadratic solutions. SIAM J. Appl. Math. 14 (1966), 3, 496-501. · Zbl 0144.02001
[10] B. T. Smith, al.: Matrix Eigensystem Routines – EISPACK Guide. (Lecture Notes in Computer Science 6.) Springer-Verlag, Berlin–Heidelberg–New York 1976. · Zbl 0325.65016
[11] G. W. Stewart: Introduction to Matrix Computations. Academic Press, New York 1976. · Zbl 0302.65021
[12] V. Strejc: Discrete version of model-in-the-system control. Problems Control Inform. Theory 17 (1988), 2, 71-76. · Zbl 0648.93018
[13] V. Strejc: State Space Theory of Discrete Linear Control. John Wiley and Sons, Chichester 1981. · Zbl 0567.93051
[14] D. R. Vaugham: A nonrecursive algebraic solution for the discrete Riccati equation. IEEE Trans. Automat. Control AC-15 (1970), 597-599.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.