Investigation of optimal control problems governed by a time-dependent Kohn-Sham model. (English) Zbl 1407.35170

Summary: A viable way to develop optimal control strategies for multi-particle quantum systems is to consider the framework of time-dependent density functional theory (TDDFT), where low-dimensional nonlinear Schrödinger models are developed to compute the electronic density of related high-dimensional linear Schrödinger equations. Among these models, the Kohn-Sham TDDFT system allows to accommodate control mechanisms in the same potentials that appear in the original multi-dimensional Schrödinger equations, thus allowing a physical interpretation and a laboratory implementation. The purpose of this paper is the mathematical analysis of optimal control problems governed by the time-dependent Kohn-Sham (TDKS) equations including a control potential that has the purpose to drive the evolution of the electron density to perform given tasks. For the resulting optimal control problems, existence of optimal solutions is proved and their characterization as solutions of TDKS optimality systems is investigated.


35Q40 PDEs in connection with quantum mechanics
49J20 Existence theories for optimal control problems involving partial differential equations
81Q93 Quantum control


Full Text: DOI arXiv


[1] Andrews B, Hopper C. The Ricci flow in Riemannian geometry. Lecture notes in mathematics. Berlin: Springer; 2011. · Zbl 1214.53002
[2] Attaccalite, C.; Moroni, S.; Gori-Giorgi, P.; Bachelet, GB, Correlation energy and spin polarization in the 2D electron gas, Phys Rev Lett, 88, 256,601, (2002)
[3] Baudouin, L.; Kavian, O.; Puel, JP, Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J Differ Equ, 216, 188-222, (2005) · Zbl 1109.35094
[4] Borzì A, Ciaramella G, Sprengel M. Formulation and numerical solution of quantum control problems. Philadelphia: Society for Industrial and Applied Mathematics; 2017. · Zbl 1402.81006
[5] Borzì A, Schulz V. Computational optimization of systems governed by partial differential equations. Philadelphia: Society for Industrial and Applied Mathematics; 2012. · Zbl 1240.90001
[6] Cancès, E.; le Bris, C.; Pilot, M., Contrôle optimal bilinéaire d’une équation de schrödinger, Comptes Rendus de l’Acadé,mie des Sciences - Series I - Mathematics, 330, 567-571, (2000) · Zbl 0953.49005
[7] Cancès, E.; Le bris, C., On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics, Math Models Methods Appl Sci, 9, 963-990, (1999) · Zbl 1011.81087
[8] Castro, A.; Appel, H.; Oliveira, M.; Rozzi, CA; Andrade, X.; Lorenzen, F.; Marques, MAL; Gross, EKU; Rubio, A., Octopus: a tool for the application of time-dependent density functional theory, Phys Status Solidi (B), 243, 2465-88, (2006)
[9] Castro, A.; Werschnik, J.; Gross, EKU, Controlling the dynamics of many-electron systems from first principles: a combination of optimal control and time-dependent density-functional theory, Phys Rev Lett, 109, 153,603, (2012)
[10] Ciarlet PG. Linear and nonlinear functional analysis with applications. Philadelphia: Society for Industrial and Applied Mathematics; 2013. · Zbl 1293.46001
[11] Constantin, LA, Dimensional crossover of the exchange-correlation energy at the semilocal level, Phys Rev B, 78, 155,106, (2008)
[12] Engel E, Dreizler RM. Density functional theory, an advanced course. Heidelberg: Springer; 2011. · Zbl 1216.81004
[13] Evans LC. Partial differential equations, Graduate Studies in Mathematics, vol 19, 2nd edn. Providence: American Mathematical Society; 2010.
[14] Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Phys Rev, 136, b864-71, (1964)
[15] Jerome, JW, Time dependent closed quantum systems: nonlinear Kohn-Sham potential operators and weak solutions, J Math Anal Appl, 429, 995-1006, (2015) · Zbl 1405.35174
[16] Kohn, W.; Sham, LJ, Self-consistent equations including exchange and correlation effects, Phys Rev, 140, a1133-8, (1965)
[17] Leeuwen, R., Mapping from densities to potentials in time-dependent density-functional theory, Phys Rev Lett, 82, 3863-6, (1999)
[18] Lions JL. Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars: Dunod; 1969. · Zbl 0189.40603
[19] Maday, Y.; Salomon, J.; Turinici, G., Monotonic time-discretized schemes in quantum control, Numer Math, 103, 323-338, (2006) · Zbl 1095.65058
[20] Marques, MAL; Oliveira, MJT; Burnus, T., Libxc: a library of exchange and correlation functionals for density functional theory, Comput Phys Commun, 183, 2272-81, (2012)
[21] Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU. Time-dependent density functional theory, Lecture notes in physics, vol. 706. Berlin: Springer; 2006. · Zbl 1110.81002
[22] Parr RG, Yang W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press; 1989.
[23] Remmert E. Theory of complex functions. Heidelberg: Springer; 1991. · Zbl 0780.30001
[24] Ruggenthaler, M.; Penz, M.; Leeuwen, R., Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory, J Phys: Condens Matter, 27, 203,202, (2015)
[25] Runge, E.; Gross, EKU, Density-functional theory for time-dependent systems, Phys Rev Lett, 52, 997-1000, (1984)
[26] Salomon J. Limit points of the monotonic schemes in quantum control. Proceedings of the 44th IEEE Conference on Decision and Control Sevilla; 2005.
[27] Sprengel, M.; Ciaramella, G.; Borzì, A., A COKOSNUT code for the control of the time-dependent Kohn-Sham model, Comput Phys Commun, 214, 231-8, (2017) · Zbl 1376.93047
[28] Sprengel, M.; Ciaramella, G.; Borzì, A., A theoretical investigation of time-dependent Kohn-Sham equations, SIAM J Math Anal, 49, 1681-1704, (2017) · Zbl 1365.35132
[29] Stone, MH, On one-parameter unitary groups in Hilbert space, Annals of Mathematics. Second Series, 33, 643-8, (1932) · Zbl 0005.16403
[30] Tröltzsch F. Optimal control of partial differential equations, 1st ed. Providence: American Mathematical Society; 2010. · Zbl 1195.49001
[31] Tröltzsch F, Valli A. 2014. Optimal control of low-frequency electromagnetic fields in multiply connected conductors. DFG-Research Center Matheon, Matheon preprint.
[32] von Winckel, G.; Borzì, A., Computational techniques for a quantum control problem with H1-cost, Inverse Problems, 24, 034,007,23, (2008) · Zbl 1145.81412
[33] von Winckel, G.; Borzì, A.; Volkwein, S., A globalized Newton method for the accurate solution of a dipole quantum control problem, SIAM J Sci Comput, 31, 4176-4203, (2009) · Zbl 1206.35211
[34] Yserentant H. Regularity and approximability of electronic wave functions, Lecture notes in mathematics, vol 2000. Berlin: Springer; 2010. · Zbl 1204.35003
[35] Zowe, J.; Kurcyusz, S., Regularity and stability for the mathematical programming problem in Banach spaces, Appl Math Optim, 5, 49-62, (1979) · Zbl 0401.90104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.