The propagation delay in the timing of a pulsar orbiting a supermassive black hole. (English) Zbl 1414.83032

Summary: The observation of a pulsar closely orbiting the galactic center supermassive black hole would open the window for an accurate determination of the black hole parameters and for new tests of General Relativity. An important relativistic effect which has to be taken into account in the timing model is the propagation delay of the pulses in the gravitational field of the black hole. Due to the extreme mass ratio of the pulsar and the supermassive back hole we use the test particle limit to derive an exact analytical formula for the propagation delay in a Schwarzschild spacetime. We then compare this result to the propagation delays derived in the usually employed post-Newtonian approximation, in particular to the Shapiro delay up to the second post-Newtonian order. For edge-on orbits, we also consider modifications of the Shapiro delay which take the lensing effects into account. Our results are then used to assess the accuracy of the different orders of the post-Newtonian approximation of the propagation delay. This comparison indicates that for (nearly) edge-on orbits the new exact delay formula should be used.


83C57 Black holes
83C10 Equations of motion in general relativity and gravitational theory
85A25 Radiative transfer in astronomy and astrophysics


Full Text: DOI arXiv


[1] Ghez, AM; Salim, S.; Weinberg, NN; Lu, JR; Do, T.; Dunn, JK; Matthews, K.; Morris, MR; Yelda, S.; Becklin, EE; Kremenek, T.; Milosavljevic, M.; Naiman, J., Measuring distance and properties of the milky way’s central supermassive black hole with stellar orbits, Astrophys. J., 689, 1044-1062, (2008)
[2] Gillessen, S.; Eisenhauer, F.; Trippe, S.; Alexander, T.; Genzel, R.; Martins, F.; Ott, T., Monitoring stellar orbits around the massive black hole in the galactic center, Astrophys. J., 692, 1075-1109, (2009)
[3] Lu, R-S; Broderick, AE; Baron, F.; Monnier, JD; Fish, VL; Doeleman, SS; Pankratius, V., Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope, Astrophys. J., 788, 120, (2014)
[4] Falcke, H.; Melia, F.; Agol, E., Viewing the shadow of the black hole at the galactic center, Astrophys. J. Lett., 528, l13-l16, (2000)
[5] Liu, K.; Wex, N.; Kramer, M.; Cordes, JM; Lazio, TJW, Prospects for probing the spacetime of Sgr A* with pulsars, Astrophys. J., 747, 1, (2012)
[6] Psaltis, D.; Wex, N.; Kramer, M., A quantitative test of the no-hair theorem with Sgr A* using stars, pulsars, and the event horizon telescope, Astrophys. J., 818, 121, (2016)
[7] Broderick, AE; Johannsen, T.; Loeb, A.; Psaltis, D., Testing the no-hair theorem with event horizon telescope observations of sagittarius A*, Astrophys. J., 784, 7, (2014)
[8] Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Davelaar, JRJ; Deane, R.; Laurentis, M.; Desvignes, G.; Eatough, RP; Eisenhauer, F.; Fraga-Encinas, R.; Fromm, CM; Gillessen, S.; Grenzebach, A.; Issaoun, S.; Janßen, M.; Konoplya, R.; Krichbaum, TP; Laing, R.; Liu, K.; Lu, R-S; Mizuno, Y.; Moscibrodzka, M.; Müller, C.; Olivares, H.; Pfuhl, O.; Porth, O.; Roelofs, F.; Ros, E.; Schuster, K.; Tilanus, R.; Torne, P.; Bemmel, I.; Langevelde, HJ; Wex, N.; Younsi, Z.; Zhidenko, A., BlackHoleCam: fundamental physics of the galactic center, Int. J. Mod. Phys. D, 26, 1730001-239, (2017)
[9] Hees, A.; Do, T.; Ghez, AM; Martinez, GD; Naoz, S.; Becklin, EE; Boehle, A.; Chappell, S.; Chu, D.; Dehghanfar, A.; Kosmo, K.; Lu, JR; Matthews, K.; Morris, MR; Sakai, S.; Schödel, R.; Witzel, G., Testing general relativity with stellar orbits around the supermassive black hole in our galactic center, Phys. Rev. Lett., 118, 211101, (2017)
[10] Grould, M.; Meliani, Z.; Vincent, FH; Grandclément, P.; Gourgoulhon, E., Comparing timelike geodesics around a Kerr black hole and a boson star, Class. Quantum Gravity, 34, 215007, (2017) · Zbl 1380.83032
[11] Cunha, PVP; Herdeiro, CAR; Radu, E.; Rúnarsson, HF, Shadows of Kerr black holes with scalar hair, Phys. Rev. Lett., 115, 211102, (2015)
[12] Cunha, PVP; Font, JA; Herdeiro, C.; Radu, E.; Sanchis-Gual, N.; Zilhão, M., Lensing and dynamics of ultracompact bosonic stars, Phys. Rev. D, 96, 104040, (2017)
[13] Vincent, FH; Gourgoulhon, E.; Herdeiro, C.; Radu, E., Astrophysical imaging of Kerr black holes with scalar hair, Phys. Rev. D, 94, 084045, (2016)
[14] Vincent, FH; Meliani, Z.; Grandclément, P.; Gourgoulhon, E.; Straub, O., Imaging a boson star at the Galactic center, Class. Quantum Gravity, 33, 105015, (2016)
[15] Mizuno, Y.; Younsi, Z.; Fromm, CM; Porth, O.; Laurentis, M.; Olivares, H.; Falcke, H.; Kramer, M.; Rezzolla, L., The current ability to test theories of gravity with black hole shadows, Nat. Astron., 2, 585, (2018)
[16] Pfahl, E.; Loeb, A., Probing the spacetime around sagittarius A* with radio pulsars, Astrophys. J., 615, 253-258, (2004)
[17] Macquart, J-P; Kanekar, N.; Frail, DA; Ransom, SM, A high-frequency search for pulsars within the central parsec of Sgr A*, Astrophys. J., 715, 939-946, (2010)
[18] Macquart, J-P; Kanekar, N., On detecting millisecond pulsars at the galactic center, Astrophys. J., 805, 172, (2015)
[19] Rajwade, KM; Lorimer, DR; Anderson, LD, Detecting pulsars in the galactic centre, MNRAS, 471, 730-739, (2017)
[20] Keane, E., Bhattacharyya, B., Kramer, M., Stappers, B., Keane, E. F., Bhattacharyya, B., Kramer, M., Stappers, B. W., Bates, S. D., Burgay, M., Chatterjee, S., Champion, D. J., Eatough, R. P., Hessels, J. W. T., Janssen, G., Lee, K. J., van Leeuwen, J., Margueron, J., Oertel, M., Possenti, A., Ransom, S., Theureau, G., Torne, P.: Proceedings of Science vol. 215, Advancing Astrophysics with the Square Kilometre Array (AASKA14), id. 40 (2015)
[21] Bower, G. C., Chatterjee, S., Cordes, J., Demorest, P., Deneva, J. S., Dexter, J., Kramer, M., Lazio, J., Ransom, S., Shao, L., Wex, N., Wharton, R.: Galactic center pulsars with the ngVLA. In: Murphy,E. (ed.) Science with a Next Generation Very Large Array, Astronomical Society of the Pacific Conference Series, vol. 517, p. 793 (2018)
[22] Eisenhauer, F.; Perrin, G.; Brandner, W.; Straubmeier, C.; Perraut, K.; Amorim, A.; Schöller, M.; Gillessen, S.; Kervella, P.; Benisty, M.; Araujo-Hauck, C.; Jocou, L.; Lima, J.; Jakob, G.; Haug, M.; Clénet, Y.; Henning, T.; Eckart, A.; Berger, J-P; Garcia, P.; Abuter, R.; Kellner, S.; Paumard, T.; Hippler, S.; Fischer, S.; Moulin, T.; Villate, J.; Avila, G.; Gräter, A.; Lacour, S.; Huber, A.; Wiest, M.; Nolot, A.; Carvas, P.; Dorn, R.; Pfuhl, O.; Gendron, E.; Kendrew, S.; Yazici, S.; Anton, S.; Jung, Y.; Thiel, M.; Choquet, É; Klein, R.; Teixeira, P.; Gitton, P.; Moch, D.; Vincent, F.; Kudryavtseva, N.; Ströbele, S.; Sturm, S.; Fédou, P.; Lenzen, R.; Jolley, P.; Kister, C.; Lapeyrère, V.; Naranjo, V.; Lucuix, C.; Hofmann, R.; Chapron, F.; Neumann, U.; Mehrgan, L.; Hans, O.; Rousset, G.; Ramos, J.; Suarez, M.; Lederer, R.; Reess, J-M; Rohloff, R-R; Haguenauer, P.; Bartko, H.; Sevin, A.; Wagner, K.; Lizon, J-L; Rabien, S.; Collin, C.; Finger, G.; Davies, R.; Rouan, D.; Wittkowski, M.; Dodds-Eden, K.; Ziegler, D.; Cassaing, F.; Bonnet, H.; Casali, M.; Genzel, R.; Lena, P., GRAVITY: observing the universe in motion, Messenger, 143, 16-24, (2011)
[23] Collaboration, Gravity, First light for GRAVITY: a new era for optical interferometry, Messenger, 170, 10-15, (2017)
[24] Verbiest, JPW; Bailes, M.; Straten, W.; Hobbs, GB; Edwards, RT; Manchester, RN; Bhat, NDR; Sarkissian, JM; Jacoby, BA; Kulkarni, SR, Precision timing of PSR J0437-4715: an accurate pulsar distance, a high pulsar mass, and a limit on the variation of Newton’s gravitational constant, Astrophys. J., 679, 675-680, (2008)
[25] Kramer, M.: Probing gravitation with pulsars. In: Neutron Stars and Pulsars: Challenges and Opportunities after 80 Years, Proceedings of the International Astronomical Union, vol. 8, p. 19 (2012)
[26] Zhang, Fupeng; Saha, Prasenjit, Probing the spinning of the massive black hole in the galactic center via pulsar timing: a full relativistic treatment, Astrophys. J., 849, 33, (2017)
[27] Wang, Yan; Jenet, Frederick A.; Creighton, Teviet; Price, Richard H., Strong field effects on pulsar arrival times: circular orbits and equatorial beams, Astrophys. J., 697, 237-246, (2009)
[28] Wang, Y.; Creighton, T.; Price, RH; Jenet, FA, Strong field effects on pulsar arrival times: general orientations, Astrophys. J., 705, 1252-1259, (2009)
[29] Edwards, RT; Hobbs, GB; Manchester, RN, TEMPO2, a new pulsar timing package—II. The timing model and precision estimates, MNRAS, 372, 1549-1574, (2006)
[30] Damour, T.; Taylor, JH, Strong-field tests of relativistic gravity and binary pulsars, Phys. Rev. D, 45, 1840-1868, (1992)
[31] Damour, T.; Deruelle, N., General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula, Ann. Inst. Henri Poincaré Phys. Théor., 44, 263-292, (1986) · Zbl 0617.70010
[32] Shapiro, II, Fourth test of general relativity, Phys. Rev. Lett., 13, 789-791, (1964)
[33] Blandford, R.; Teukolsky, SA, Arrival-time analysis for a pulsar in a binary system, Astrophys. J., 205, 580, (1976)
[34] Brumberg, V. A.: Essential relativistic celestial mechanics. Taylor & Francis, ISBN: 9780750300629 · Zbl 0743.70001
[35] Zschocke, S., Klioner, S. A.: Analytical solution for light propagation in Schwarzschild field having an accuracy of 1 micro-arcsecond (2009). ArXiv e-prints
[36] Schneider, J., Gravitational beam deviation effects in the timing formula of binary pulsars, Astron. Astrophys., 232, 62, (1990)
[37] Doroshenko, OV; Kopeikin, SM, Relativistic effect of gravitational deflection of light in binary pulsars, MNRAS, 274, 1029-1038, (1995)
[38] Wex, N.; Kopeikin, SM, Frame dragging and other precessional effects in black hole pulsar binaries, Astrophys. J., 514, 388-401, (1999)
[39] Damour, T.; Schäfer, G., Higher-order relativistic periastron advances and binary pulsars, Il Nuovo Cimento B, 101, 127, (1988)
[40] Wex, N., The second post-Newtonian motion of compact binary-star systems with spin, Class. Quantum Gravity, 12, 983, (1995) · Zbl 0825.70076
[41] Königsdörffer, C.; Gopakumar, A., Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: the leading order spin-orbit interaction, Phys. Rev. D, 71, 024039, (2005)
[42] Futamase, T.; Itoh, Y., The post-Newtonian approximation for relativistic compact binaries, Living Rev. Relativ., 10, 2, (2007) · Zbl 1255.83005
[43] Hartung, J.; Steinhoff, J.; Schäfer, G., Next-to-next-to-leading order post-Newtonian linear-in-spin binary Hamiltonians, Ann. Phys., 525, 359, (2013) · Zbl 1269.83016
[44] Damour, T.; Jaranowski, P.; Schäfer, G., Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D, 89, 064058, (2014)
[45] Levi, M., Steinhoff, J.: Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order (2016). ArXiv e-prints
[46] Bernard, L.; Blanchet, L.; Bohé, A.; Faye, G.; Marsat, S., Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order, Phys. Rev. D, 95, 044026, (2017)
[47] Semerák, O., Approximating light rays in the Schwarzschild field, Astrophys. J., 800, 77, (2015)
[48] Beloborodov, AM, Gravitational bending of light near compact objects, Astrophys. J. Lett., 566, l85-l88, (2002)
[49] Falco, V.; Falanga, M.; Stella, L., Approximate analytical calculations of photon geodesics in the Schwarzschild metric, A&A, 595, a38, (2016)
[50] Lai, Dong; Rafikov, Roman R., Effects of gravitational lensing in the double pulsar system J0737-3039, Astrophys. J., 621, l41-l44, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.