Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case. (English) Zbl 1409.81155

Summary: We present a compact analytic expression for the leading colour two-loop five-gluon amplitude in Yang-Mills theory with a single negative helicity and four positive helicities. The analytic result is reconstructed from numerical evaluations over finite fields. The numerical method combines integrand reduction, integration-by-parts identities and Laurent expansion into a basis of pentagon functions to compute the coefficients directly from six-dimensional generalised unitarity cuts.


81U20 \(S\)-matrix theory, etc. in quantum theory
81V05 Strong interaction, including quantum chromodynamics
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
Full Text: DOI arXiv


[1] J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, in 10th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2017), Les Houches, France, June 5-23, 2017 (2018) [arXiv:1803.07977].
[2] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[3] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [INSPIRE].
[4] P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP06 (2008) 030 [arXiv:0803.3964] [INSPIRE].
[5] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP08 (2010) 080 [arXiv:1006.0710] [INSPIRE]. · Zbl 1290.81151
[6] G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J.C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].
[7] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[8] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[9] Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e−to four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].
[10] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [INSPIRE]. · Zbl 1178.81202
[11] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].
[12] R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [INSPIRE].
[13] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [INSPIRE]. · Zbl 1246.81170
[14] C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
[15] P. Mastrolia and G. Ossola, On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes, JHEP11 (2011) 014 [arXiv:1107.6041] [INSPIRE]. · Zbl 1306.81357
[16] D.A. Kosower and K.J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev.D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].
[17] S. Badger, H. Frellesvig and Y. Zhang, Hepta-Cuts of Two-Loop Scattering Amplitudes, JHEP04 (2012) 055 [arXiv:1202.2019] [INSPIRE]. · Zbl 1348.81340
[18] Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic Geometry Methods, JHEP09 (2012) 042 [arXiv:1205.5707] [INSPIRE]. · Zbl 1397.81183
[19] S. Badger, H. Frellesvig and Y. Zhang, An Integrand Reconstruction Method for Three-Loop Amplitudes, JHEP08 (2012) 065 [arXiv:1207.2976] [INSPIRE]. · Zbl 1397.81184
[20] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering Amplitudes from Multivariate Polynomial Division, Phys. Lett.B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].
[21] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division, Phys. Rev.D 87 (2013) 085026 [arXiv:1209.4319] [INSPIRE]. · Zbl 1331.81218
[22] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes, Phys. Lett.B 727 (2013) 532 [arXiv:1307.5832] [INSPIRE]. · Zbl 1331.81218
[23] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE].
[24] P. Mastrolia, T. Peraro and A. Primo, Adaptive Integrand Decomposition in parallel and orthogonal space, JHEP08 (2016) 164 [arXiv:1605.03157] [INSPIRE]. · Zbl 1390.81180
[25] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP12 (2016) 030 [arXiv:1608.01902] [INSPIRE]. · Zbl 1390.81631
[26] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier and B. Page, Subleading Poles in the Numerical Unitarity Method at Two Loops, Phys. Rev.D 95 (2017) 096011 [arXiv:1703.05255] [INSPIRE].
[27] S. Badger, H. Frellesvig and Y. Zhang, A Two-Loop Five-Gluon Helicity Amplitude in QCD, JHEP12 (2013) 045 [arXiv:1310.1051] [INSPIRE].
[28] S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A Complete Two-Loop, Five-Gluon Helicity Amplitude in Yang-Mills Theory, JHEP10 (2015) 064 [arXiv:1507.08797] [INSPIRE]. · Zbl 1388.81274
[29] D.C. Dunbar and W.B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude, Phys. Rev.D 93 (2016) 085029 [arXiv:1603.07514] [INSPIRE].
[30] D.C. Dunbar, G.R. Jehu and W.B. Perkins, The two-loop n-point all-plus helicity amplitude, Phys. Rev.D 93 (2016) 125006 [arXiv:1604.06631] [INSPIRE].
[31] D.C. Dunbar, G.R. Jehu and W.B. Perkins, Two-loop six gluon all plus helicity amplitude, Phys. Rev. Lett.117 (2016) 061602 [arXiv:1605.06351] [INSPIRE].
[32] S. Badger, G. Mogull and T. Peraro, Local integrands for two-loop all-plus Yang-Mills amplitudes, JHEP08 (2016) 063 [arXiv:1606.02244] [INSPIRE]. · Zbl 1390.81278
[33] D.C. Dunbar, J.H. Godwin, G.R. Jehu and W.B. Perkins, Analytic all-plus-helicity gluon amplitudes in QCD, Phys. Rev.D 96 (2017) 116013 [arXiv:1710.10071] [INSPIRE].
[34] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett.120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].
[35] S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity, Phys. Rev.D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].
[36] S. Badger et al., Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD, PoS(LL2018)006 (2018) [arXiv:1807.09709] [INSPIRE].
[37] S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton Amplitudes from Numerical Unitarity, JHEP11 (2018) 116 [arXiv:1809.09067] [INSPIRE].
[38] R.H. Boels, Q. Jin and H. Lüo, Efficient integrand reduction for particles with spin, arXiv:1802.06761 [INSPIRE].
[39] H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the IBP approach, arXiv:1805.09182 [INSPIRE].
[40] F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett.B 100 (1981) 65 [INSPIRE].
[41] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].
[42] J. Gluza, K. Kajda and D.A. Kosower, Towards a Basis for Planar Two-Loop Integrals, Phys. Rev.D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].
[43] H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys. Rev.D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].
[44] K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev.D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].
[45] A. Georgoudis, K.J. Larsen and Y. Zhang, Azurite: An algebraic geometry based package for finding bases of loop integrals, Comput. Phys. Commun.221 (2017) 203 [arXiv:1612.04252] [INSPIRE]. · Zbl 1498.81007
[46] D.A. Kosower, Direct Solution of Integration-by-Parts Systems, Phys. Rev.D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].
[47] J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP09 (2018) 024 [arXiv:1805.01873] [INSPIRE]. · Zbl 1398.81264
[48] J. Böhm, A. Georgoudis, K.J. Larsen, M. Schulze and Y. Zhang, Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals, Phys. Rev.D 98 (2018) 025023 [arXiv:1712.09737] [INSPIRE].
[49] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[50] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE]. · Zbl 1219.81133
[51] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE]. · Zbl 1344.81030
[52] P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program, Comput. Phys. Commun.230 (2018) 99 [arXiv:1705.05610] [INSPIRE]. · Zbl 1498.81004
[53] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett.B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE]. · Zbl 1330.81151
[54] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [INSPIRE].
[55] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[56] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
[57] C.G. Papadopoulos, Simplified differential equations approach for Master Integrals, JHEP07 (2014) 088 [arXiv:1401.6057] [INSPIRE].
[58] A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals, JHEP02 (2015) 120 [arXiv:1411.7392] [INSPIRE]. · Zbl 1388.81378
[59] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE]. · Zbl 1356.81169
[60] C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the Simplified Differential Equations approach, JHEP04 (2016) 078 [arXiv:1511.09404] [INSPIRE].
[61] M. Zeng, Differential equations on unitarity cut surfaces, JHEP06 (2017) 121 [arXiv:1702.02355] [INSPIRE]. · Zbl 1380.81135
[62] D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP05 (2018) 164 [arXiv:1712.09610] [INSPIRE].
[63] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP10 (2018) 103 [arXiv:1807.09812] [INSPIRE]. · Zbl 1402.81256
[64] S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar hexa-box integrals, JHEP01 (2019) 006 [arXiv:1807.11522] [INSPIRE]. · Zbl 1409.81157
[65] D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic result for the nonplanar hexa-box integrals, arXiv:1809.06240 [INSPIRE]. · Zbl 1414.81255
[66] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett.70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
[67] S. Caron-Huot, L.J. Dixon, M. von Hippel, A.J. McLeod and G. Papathanasiou, The Double Pentaladder Integral to All Orders, JHEP07 (2018) 170 [arXiv:1806.01361] [INSPIRE]. · Zbl 1395.81276
[68] L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE]. · Zbl 1377.81197
[69] S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].
[70] L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE].
[71] Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft anomalous dimension, JHEP09 (2017) 073 [arXiv:1706.10162] [INSPIRE]. · Zbl 1382.81196
[72] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
[73] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP06 (2009) 081 [Erratum ibid.11 (2013) 024] [arXiv:0903.1126] [INSPIRE]. · Zbl 1342.81350
[74] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [Erratum ibid.111 (2013) 199905] [arXiv:0901.0722] [INSPIRE]. · Zbl 1434.81135
[75] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP03 (2009) 079 [arXiv:0901.1091] [INSPIRE].
[76] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE]. · Zbl 1342.81291
[77] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE]. · Zbl 1214.81141
[78] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP06 (2012) 125 [arXiv:1012.6032] [INSPIRE]. · Zbl 1397.81428
[79] J.L. Bourjaily, E. Herrmann and J. Trnka, Prescriptive Unitarity, JHEP06 (2017) 059 [arXiv:1704.05460] [INSPIRE]. · Zbl 1380.81388
[80] F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys.B 306 (1988) 759 [INSPIRE].
[81] C. Cheung and D. O’Connell, Amplitudes and Spinor-Helicity in Six Dimensions, JHEP07 (2009) 075 [arXiv:0902.0981] [INSPIRE].
[82] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[83] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys.B 437 (1995) 259 [hep-ph/9409393] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.