zbMATH — the first resource for mathematics

Locally adaptive confidence bands. (English) Zbl 1415.62015
Summary: We develop honest and locally adaptive confidence bands for probability densities. They provide substantially improved confidence statements in case of inhomogeneous smoothness, and are easily implemented and visualized. The article contributes conceptual work on locally adaptive inference as a straightforward modification of the global setting imposes severe obstacles for statistical purposes. Among others, we introduce a statistical notion of local Hölder regularity and prove a correspondingly strong version of local adaptivity. We substantially relax the straightforward localization of the self-similarity condition in order not to rule out prototypical densities. The set of densities permanently excluded from the consideration is shown to be pathological in a mathematically rigorous sense. On a technical level, the crucial component for the verification of honesty is the identification of an asymptotically least favorable stationary case by means of Slepian’s comparison inequality.
62G07 Density estimation
62G15 Nonparametric tolerance and confidence regions
Full Text: DOI Euclid arXiv
[1] Baraud, Y. (2004). Confidence balls in Gaussian regression. Ann. Statist.32 528–551. · Zbl 1093.62051
[2] Bickel, P. J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates. Ann. Statist.1 1071–1095. · Zbl 0275.62033
[3] Bull, A. D. (2012). Honest adaptive confidence bands and self-similar functions. Electron. J. Stat.6 1490–1516. · Zbl 1295.62049
[4] Bull, A. D. and Nickl, R. (2013). Adaptive confidence sets in \(L^{2}\). Probab. Theory Related Fields156 889–919. · Zbl 1273.62105
[5] Cai, T. T. and Low, M. G. (2004). An adaptation theory for nonparametric confidence intervals. Ann. Statist.32 1805–1840. · Zbl 1056.62060
[6] Cai, T. T. and Low, M. G. (2006). Adaptive confidence balls. Ann. Statist.34 202–228. · Zbl 1091.62037
[7] Carpentier, A. (2013). Honest and adaptive confidence sets in \(L_{p}\). Electron. J. Stat.7 2875–2923. · Zbl 1280.62055
[8] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014a). Anti-concentration and honest, adaptive confidence bands. Ann. Statist.42 1787–1818. · Zbl 1305.62161
[9] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014b). Gaussian approximation of suprema of empirical processes. Ann. Statist.42 1564–1597. · Zbl 1317.60038
[10] Davies, P. L., Kovac, A. and Meise, M. (2009). Nonparametric regression, confidence regions and regularization. Ann. Statist.37 2597–2625. · Zbl 1173.62023
[11] Dümbgen, L. (1998). New goodness-of-fit tests and their application to nonparametric confidence sets. Ann. Statist.26 288–314.
[12] Dümbgen, L. (2003). Optimal confidence bands for shape-restricted curves. Bernoulli9 423–449.
[13] Genovese, C. R. and Wasserman, L. (2005). Confidence sets for nonparametric wavelet regression. Ann. Statist.33 698–729. · Zbl 1068.62057
[14] Genovese, C. and Wasserman, L. (2008). Adaptive confidence bands. Ann. Statist.36 875–905. · Zbl 1139.62311
[15] Giné, E. and Nickl, R. (2010). Confidence bands in density estimation. Ann. Statist.38 1122–1170. · Zbl 1183.62062
[16] Hengartner, N. W. and Stark, P. B. (1995). Finite-sample confidence envelopes for shape-restricted densities. Ann. Statist.23 525–550. · Zbl 0828.62043
[17] Hoffmann, M. and Nickl, R. (2011). On adaptive inference and confidence bands. Ann. Statist.39 2383–2409. · Zbl 1232.62072
[18] Juditsky, A. and Lambert-Lacroix, S. (2003). Nonparametric confidence set estimation. Math. Methods Statist.12 410–428.
[19] Kerkyacharian, G., Nickl, R. and Picard, D. (2012). Concentration inequalities and confidence bands for needlet density estimators on compact homogeneous manifolds. Probab. Theory Related Fields153 363–404. · Zbl 06062621
[20] Kueh, A. (2012). Locally adaptive density estimation on the unit sphere using needlets. Constr. Approx.36 433–458. · Zbl 1275.42053
[21] Lepskiĭ, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Teor. Veroyatn. Primen.35 459–470.
[22] Low, M. G. (1997). On nonparametric confidence intervals. Ann. Statist.25 2547–2554. · Zbl 0894.62055
[23] Nickl, R. and Szabó, B. (2016). A sharp adaptive confidence ball for self-similar functions. Stochastic Process. Appl.126 3913–3934. · Zbl 1348.62165
[24] Patschkowski, T. and Rohde, A. (2019). Supplement to “Locally adaptive confidence bands.” DOI:10.1214/18-AOS1690SUPP.
[25] Picard, D. and Tribouley, K. (2000). Adaptive confidence interval for pointwise curve estimation. Ann. Statist.28 298–335. · Zbl 1106.62331
[26] Robins, J. and van der Vaart, A. (2006). Adaptive nonparametric confidence sets. Ann. Statist.34 229–253. · Zbl 1091.62039
[27] Seuret, S. and Véhel, J. L. (2002). The local Hölder function of a continuous function. Appl. Comput. Harmon. Anal.13 263–276. · Zbl 1023.26003
[28] Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York. Revised and extended from the 2004 French original, translated by Vladimir Zaiats.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.