×

zbMATH — the first resource for mathematics

Efficient gluing of numerical continuation and a multiple solution method for elliptic PDEs. (English) Zbl 1410.65480
Summary: Numerical continuation calculations for ordinary differential equations (ODEs) are, by now, an established tool for bifurcation analysis in dynamical systems theory as well as across almost all natural and engineering sciences. Although several excellent standard software packages are available for ODEs, there are - for good reasons - no standard numerical continuation toolboxes available for partial differential equations (PDEs), which cover a broad range of different classes of PDEs automatically. A natural ach to this problem is to look for efficient gluing computation approaches, with independent components developed by researchers in numerical analysis, dynamical systems, scientific computing and mathematical modeling. In this paper, we shall study several elliptic PDEs (Lane-Emden-Fowler, Lane-Emden-Fowler with microscopic force, Caginalp) via the numerical continuation software pde2path and develop a gluing component to determine a set of starting solutions for the continuation by exploiting the variational structures of the PDEs. In particular, we solve the initialization problem of numerical continuation for PDEs via a minimax algorithm to find multiple unstable solution. Furthermore, for the Caginalp system, we illustrate the efficient gluing link of pde2path to the underlying mesh generation and the FEM MatLab pdetoolbox. Even though the approach works efficiently due to the high-level programming language and without developing any new algorithms, we still obtain interesting bifurcation diagrams and directly applicable conclusions about the three elliptic PDEs we study, in particular with respect to symmetry-breaking. In particular, we show for a modified Lane-Emden-Fowler equation with an asymmetric microscopic force, how a fully connected bifurcation diagram splits up into C-shaped isolas on which localized pattern deformation appears towards two different regimes. We conclude with a section on future software development issues that would be helpful to be addressed to simplify interfaces to allow for more efficient, time-saving, gluing computation for dynamical systems analysis of PDEs in the near future.

MSC:
65P30 Numerical bifurcation problems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35B32 Bifurcations in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
35J61 Semilinear elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27, 6, 1085-1905, (1979)
[2] Allgower, E. L.; Georg, K., Introduction to numerical continuation methods, (2003), SIAM · Zbl 1036.65047
[3] Ao, W.; Wei, J.; Zeng, J., An optimal bound on the number of interior spike solutions for the lin-ni-Takagi problem, J. Funct. Anal., 265, 7, 1324-1356, (2013) · Zbl 1286.35020
[4] Aranson, I. S.; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74, 99-143, (2002) · Zbl 1205.35299
[5] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779, (2002) · Zbl 1008.65080
[6] Ascher, U.; Christiansen, J.; Russell, R. D., COLSYS-a collocation code for boundary-value problems, Codes for Boundary-Value Problems in Ordinary Differential Equations, 164-185, (1979), Springer · Zbl 0459.65061
[7] Ascher, U. M.; Mattheij, R. M.M.; Russell, R. D., SIAM, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, (1987)
[8] Avitabile, D., Computation of planar patterns and their stability, (2008), University of Surrey, (Ph.d. thesis)
[9] Avitabile, D.; Desroches, M.; Rodrigues, S., On numerical continuation of isolas of equilibria, Int. J. Bif. Chaos, 22, 11, 1250277, (2012) · Zbl 1258.65106
[10] Avitabile, D.; Lloyd, D. J.B.; Burke, J.; Knobloch, E.; Sandstede, B., To snake or not to snake in the planar Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst., 9, 3, 704-733, (2010) · Zbl 1200.37014
[11] Banerjee, P. K.; Butterfield, R., Boundary element methods in engineering science, (1981), McGraw-Hill · Zbl 0499.73070
[12] Bangerth, W.; Heister, T., Quo vadis, scientific software?, SIAM News, 47, 1, 8, (2014)
[13] Barkley, D., Linear stability anslysis of rotating spiral waves in excitable media, Phys. Rev. Let., 68, 13, 2090-2093, (1992)
[14] Barkley, D.; Kevrekidis, I. G.; Stuart, A. M., The moment map: nonlinear dynamics and density evolution via a few moments, SIAM J. Appl. Dyn. Syst., 5, 3, 403-434, (2006) · Zbl 1210.65010
[15] Bartsch, T.; D’Aprile, T.; Pistoia, A., Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries, Ann. Inst. Henri Poincaré (C), 30, 6, 1027-1047, (2013) · Zbl 1288.35212
[16] Beck, M.; Knobloch, J.; Lloyd, D. J.; Sandstede, B.; Wagenknecht, T., Snakes, ladders, and isolas of localized patterns, SIAM J. Math. Anal., 41, 3, 936-972, (2009) · Zbl 1200.37015
[17] Beltrame, P.; Thiele, U., Time integration and steady-state continuation method for lubrication equations, SIAM J. Appl. Dyn. Syst., 9, 484-518, (2010) · Zbl 1194.35319
[18] Beyn, W.-J., The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal., 9, 379-405, (1990) · Zbl 0706.65080
[19] Bindel, D.; Friedman, M.; Govaerts, W.; Hughes, J.; Kuznetsov, Y. A., Numerical computation of bifurcations in large equilibrium systems in MATLAB, J. Comp. Appl. Math., 261, 232-248, (2014) · Zbl 1278.65003
[20] Brenner, S. C.; Scott, L. R., The mathematical theory of finite element methods, (2008), Springer · Zbl 1135.65042
[21] Caflisch, R. E., Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 7, 1-49, (1998) · Zbl 0949.65003
[22] Caginalp, G., An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal., 92, 205-245, (1986) · Zbl 0608.35080
[23] Caginalp, G.; Fife, P. C., Dynamics of layered interfaces arising from phase boundaries, SIAM J. Appl. Math., 48, 3, 506-518, (1988)
[24] Champneys, A. R.; Kuznetsov, Y. A.; Sandstede, B., A numerical toolbox for homoclinic bifurcation analysis, Int. J. of Bif. Chaos, 6, 5, 867-887, (1996) · Zbl 0877.65058
[25] Chandrasekhar, S., An introduction to the study of stellar structure, (2010), Dover · Zbl 0079.23901
[26] Chen, G.; Zhou, J.; Ni, W.-M., Algorithms and visualization for solutions of nonlinear elliptic equations, Int. J. Bifur. Chaos, 10, 7, 1565-1612, (2000) · Zbl 1090.65549
[27] Chen, X.; Zhou, J., On homotopy continuation method for computing multiple critical points, Numer. Meth. Partial Differential Equation, 24, 3, 728-748, (2008) · Zbl 1143.65050
[28] Chen, X.; Zhou, J., A local MIN-MAX-orthogonal method for finding multiple solutions to noncooperative elliptic systems, Math. Comput., 79, 2213-2236, (2010) · Zbl 1200.35094
[29] Choi, Y. S.; McKenna, P. J., A mountain pass method for the numerical solution of semilinear elliptic problems, Nonl. Anal.: Theor. Meth. Appl., 20, 417-437, (1993) · Zbl 0779.35032
[30] Cimrman, R., Sfepy - write your own FE application, (de Buyl, P.; Varoquaux, N., Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), (2014)), 65-70
[31] Clewley, R. H.; Sherwood, W. E.; LaMar, M. D.; Guckenheimer, J., A software environmentfor dynamical systems modeling, PyDSTool, (2010)
[32] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley · Zbl 1378.65009
[33] Dankowicz, H.; Schilder, F., Recipes for continuation, (2013), SIAM · Zbl 1277.65037
[34] Desroches, M.; Krauskopf, B.; Osinga, H. M., The geometry of mixed-mode oscillations in the olsen model for the perioxidase-oxidase reaction, DCDS-S, 2, 4, 807-827, (2009) · Zbl 1187.37121
[35] Desroches, M.; Krauskopf, B.; Osinga, H. M., Numerical continuation of canard orbits in slow-fast dynamical systems, Nonlinearity, 23, 3, 739-765, (2010) · Zbl 1191.34072
[36] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., MATCONT: A MATLAB package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw., 29, 141-164, (2003) · Zbl 1070.65574
[37] Dijkstra, H. A.; Wubs, F. W.; Cliffe, A. K.; Doedel, E.; Dragomirescu, I. F.; Eckhardt, B.; Gelfgat, A. Y.; Hazel, A. L.; Lucarini, V.; Salinger, A. G.; Phipps, E. T.; Sanchez-Umbria, J.; Schuttelaars, H.; Tuckerman, L. S.; Thiele, U., Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation, Commun. Comput. Phys., 15, 1, 1-45, (2014) · Zbl 1373.76026
[38] Ding, Z.; Costa, D.; Chen, G., A high linking method for sign changing solutions for semilinear elliptic equations, Nonl. Anal.: Theor. Meth. Appl., 38, 151-172, (1999) · Zbl 0941.35023
[39] Doedel, E.; Keller, H. B.; Kernevez, J.-P., Numerical analysis and control of bifurcation problems. I. bifurcation in finite dimensions, Int. J. Bifur. Chaos Appl. Sci. Eng., 1, 3, 493-520, (1991) · Zbl 0876.65032
[40] Doedel, E.; Keller, H. B.; Kernevez, J.-P., Numerical analysis and control of bifurcation problems. II. bifurcation in infinite dimensions, Int. J. Bifur. Chaos Appl. Sci. Eng., 1, 4, 745-772, (1991) · Zbl 0876.65060
[41] Doedel, E. J., AUTO, a program for the automatic bifurcation analysis of autonomous systems, Cong. Numer., 30, 265-384, (1981)
[42] Doedel, E. J.; Champneys, A.; Dercole, F.; Fairgrieve, T.; Kuznetsov, Y.; Oldeman, B.; Paffenroth, R.; Sandstede, B.; Wang, X.; Zhang, C., Auto 2007p: Continuation and bifurcation software for ordinary differential equations (with homcont), (2007)
[43] Dohnal, T.; Rademacher, J. D.M.; Uecker, H.; Wetzel, D., Pde2pathv2: multi-parameter continuation and periodic domains, 1-6, (2014), ENOC 2014 Vienna
[44] Engelborghs, K.; Luzyanina, T.; Samaey, G., DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations, (2000), KU Leuven
[45] B. Ermentrout, Xppaut, 2008, <http://www.math.pitt.edu/ bard/xpp/xpp.html>.
[46] Evans, L. C., Partial differential equations, (2002), AMS
[47] Gilbarg, D.; Trudinger, N. S., Elliptic partial differential equations of second order, (2001), Springer · Zbl 1042.35002
[48] Gottlieb, D.; Orszag, S. A., Numerical analysis of spectral methods, (1977), SIAM · Zbl 0412.65058
[49] Govaerts, W. F., Numerical methods for bifurcations of dynamical equilibria, (1987), SIAM Philadelphia, PA
[50] Grasselli, M.; Miranville, A.; Schimperna, G., The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Cont. Dyn. Syst. A, 28, 1, 67-98, (2010) · Zbl 1194.35074
[51] Grasselli, M.; Petzeltová, H.; Schimperna, G., Long time behaviour of solutions to the Caginalp system with a singular potential, Z. Anal. Anwendungen, 25, 51-72, (2006) · Zbl 1128.35021
[52] Gurtin, M. E., Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92, 178-192, (1996) · Zbl 0885.35121
[53] Guyer, J. E.; Wheeler, D.; Warren, J. A., Fipy: partial differential equations with python, Comput. Sci. Eng., 11, 3, 6-15, (2009)
[54] Collected papers of L.D. Landau, (Haar, D. T., (1965), Pergamon Press)
[55] Heinrich, S., Multilevel Monte Carlo methods, Large-scale Scientific Computing, 58-67, (2001), Springer · Zbl 1031.65005
[56] Henderson, M. E., Multiple parameter continuation: computing implicitly defined k-manifolds, Int. J. Bif. Chaos, 12, 3, 451-476, (2002) · Zbl 1044.37053
[57] Heroux, M. A.; Salinger, A. G.; Bartlett, R. A.; Thornquist, H. K.; Howle, V. E.; Tuminaro, R. S.; Hoekstra, R. J.; Willenbring, J. M.; Hu, J. J.; Williams, A.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Stanley, K. S., An overview of the trilinos project, ACM Trans. Math. Softw., 31, 3, 397-423, (2005) · Zbl 1136.65354
[58] Hoffman, J.; Johnson, C.; Kirby, R. C.; Larson, M. G.; Logg, A.; Scott, L. R., The FEniCS project, (2003)
[59] Johnson, C.; Eriksson, K., Adaptive finite element methods for parabolic problems I: a linear model problem, SIAM J. Numer. Anal., 28, 43-77, (1991) · Zbl 0732.65093
[60] Jost, J., Riemannian geometry and geometric analysis, (2005), Springer · Zbl 1083.53001
[61] Katsman, C. A.; Dijkstra, H. A.; Schmeits, M. J., Applications of continuation methods in physical oceanography, Notes Numer. Fluid Dyn., 74, 179-198, (2000) · Zbl 0964.86003
[62] Keller, H.; De Boor, C.; Golub, G. H., Numerical solution of bifurcation and nonlinear eigenvalue problems, Applications of Bifurcation Theory, 359-384, (1977), Academic Press
[63] Keller, H.; De Boor, C.; Golub, G. H., Recent advances in numerical analysis, 73-94, (1979), Academic Press
[64] Keller, H.; Sternberg, R. L.; Kalinowski, A. J.; Papadakis, J. S., Engineering and applied science, 45-52, (1980), Marcel Dekker
[65] Keller, H., The bordering algorithm and path following near singular points of higher nullity, SIAM J. Sci. Comput., 4, 4, 573-582, (1983) · Zbl 0536.65017
[66] Knees, M.; Tuckerman, L. S.; Barkley, D., Symmetry-breaking bifurcations in one-dimensional excitable media, Phys. Rev. A, 46, 8, 5054-5062, (1992)
[67] Knobloch, J.; Lloyd, D. J.; Sandstede, B.; Wagenknecht, T., Isolas of 2-pulse solutions in homoclinic snaking scenarios, J. Dyn. Diff. Equations, 23, 1, 93-114, (2011) · Zbl 1222.34040
[68] Krauskopf, B.; Osinga, H. M., Computing geodesic level sets on global (un)stable manifolds of vector fields, SIAM J. Appl. Dyn. Syst., 4, 2, 546-569, (2003) · Zbl 1089.37014
[69] Krauskopf, B.; Osinga, H. M.; Doedel, E. J.; Henderson, M. E.; Guckenheimer, J.; Vladimirsky, A.; Dellnitz, M.; Junge, O., A survey of methods for computing (un)stable manifolds of vector fields, Int. J. Bifur. Chaos, 15, 3, 763-791, (2005) · Zbl 1086.34002
[70] (Krauskopf, B.; Osinga, H. M.; Galán-Vique, J., Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, (2007), Springer)
[71] Kuehn, C., From first Lyapunov coefficients to maximal canards, Int. J. Bif. Chaos, 20, 5, 1467-1475, (2010) · Zbl 1193.34117
[72] Kuehn, C., Deterministic continutation of stochastic metastable equilibria via Lyapunov equations and ellipsoids, SIAM J. Sci. Comput., 34, 3, A1635-A1658, (2012) · Zbl 1246.65244
[73] (Küpper, T.; Seydel, R.; Troger, H., Bifurcation: Analysis, Algorithms, Applications, (1987), Birkhäuser)
[74] Kuznetsov, Y. A., Elements of applied bifurcation theory, (2004), Springer New York, NY · Zbl 1082.37002
[75] LeVeque, R. J., Finite volume methods for hyperbolic problems, (2002), CUP · Zbl 1010.65040
[76] Li, Y.; Zhou, J., A minimax method for finding multiple critical points and its applications to semilinear elliptic pdes, SIAM J. Sci. Comput., 23, 840-865, (2001) · Zbl 1002.35004
[77] Li, Y.; Zhou, J., Convergence results of a local minimax method for finding multiple critical points, SIAM J. Sci. Comput., 24, 865-885, (2002) · Zbl 1040.58003
[78] Lin, C. S.; Ni, W. M.; Takagi, I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72, 1, 1-27, (1988) · Zbl 0676.35030
[79] Lin, C. S.; Ni, W. M.; Wei, J. C., On the number of interior peak solutions for a singularly perturbed Neumann problem, Commun. Pure Appl. Math., 60, 252-281, (2007) · Zbl 1170.35424
[80] Lloyd, D. J.B.; Sandstede, B.; Avitabile, D.; Champneys, A. R., Localized hexagon patterns of the planar swifthohenberg equation, SIAM J. Appl. Dyn. Syst., 7, 3, 1049-1100, (2008) · Zbl 1168.35311
[81] The MathWorks, Matlab 2013b. 2013.
[82] The MathWorks, PDE Toolbox for MatLab. 2013.
[83] McCalla, S.; Sandstede, B., Snaking of radial solutions of the multi-dimensional Swift-Hohenberg equation: a numerical study, Physica D, 239, 1581-1592, (2010) · Zbl 1195.35042
[84] Miranville, A.; Quintanilla, R., Some generalizations of the Caginalp phase-field system, Appl. Anal., 88, 6, 877-894, (2009) · Zbl 1178.35194
[85] Ni, W.-M., Diffusion, cross-diffusion and their spike-layer steady states, Notices Am. Math. Soc., 45, 1, 9-18, (1998) · Zbl 0917.35047
[86] Ni, W.-M., Qualitative properties of solutions to elliptic problems, Stationary Partial Differential Equations, vol. 1, 157-233, (2004), Handbook of Differential Equations North-Holland · Zbl 1129.35401
[87] Peskin, C. S., The immersed boundary method, Acta Numerica, 11, 479-517, (2002) · Zbl 1123.74309
[88] Rademacher, J. D.M.; Sandstede, B.; Scheel, A., Computing absolute and essential spectra using continuation, Physica D, 229, 166-183, (2007) · Zbl 1119.65114
[89] Rogers, R. R.; Yau, M. K., A short course in cloud physics, (1989), Pergamon Press
[90] (Roose, D.; De Dier, B.; Spence, A., Continuation and Bifurcations: Numerical Techniques and Applications, (1990), Kluwer) · Zbl 0701.00021
[91] Salinger, A. G.; Burroughs, E. A.; Pawlowski, R. P.; Phipps, E. T.; Romero, L. A., Bifurcation tracking algorithms and software for large scale applications, Int. J. Bifur. Chaos Appl. Sci. Eng., 15, 3, 1015-1032, (2005) · Zbl 1076.65118
[92] B. Sandstede, D. Lloyd, Using auto for stability problems, Notes for a mini-course given at the University of Washington in Seattle/Washington see: <http://www.dam.brown.edu/people/sandsted/auto/auto-tutorial.pdf> (2011).
[93] Schilder, F.; Osinga, H. M.; Vogt, W., Continuation of quasi-periodic invariant tori, SIAM J. Appl. Dyn. Syst., 4, 3, 459-488, (2005) · Zbl 1090.37057
[94] Schlömer, N.; Avitabile, D.; Vanroose, W., Numerical bifurcation study of superconducting patterns on a square, SIAM J. Appl. Dyn. Sys., 11, 1, 447-477, (2012) · Zbl 1253.82125
[95] Serrin, J.; Zou, H., Non-existence of positive solutions of Lane-Emden systems, Differential Integral Equations, 9, 4, 635-653, (1996) · Zbl 0868.35032
[96] Seydel, R., Practical bifurcation and stability analysis, (1994), Springer · Zbl 0806.34028
[97] Szalai, R.; Stépán, G.; Hogan, S. J., Continuation of bifurcations in periodic delay-differential equations using characteristic matrices, SIAM J. Sci. Comput., 28, 4, 1301-1317, (2006) · Zbl 1118.37037
[98] Taylor, C.; Dawes, J. H., Snaking and isolas of localised states in bistable discrete lattices, Phys. Lett. A, 375, 1, 14-22, (2010) · Zbl 1241.35201
[99] Thomas, J. W., Numerical partial differential equations: finite difference methods, (1995), Springer · Zbl 0831.65087
[100] Thomas, S. K.; Cassoni, R. P.; MacArthur, C. D., Aircraft anti-icing and de-icing techniques and modeling, J. Aircraft, 33, 5, 841-854, (1996)
[101] Tuckerman, L. S.; Barkley, D.; Doedel, E.; Tuckerman, L. S., Bifurcation analysis for timesteppers, Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, 543-566, (2000), Springer · Zbl 0961.35015
[102] Uecker, H.; Wetzel, D., Numerical results for snaking of patterns over patterns in some 2D selkov-Schnakenberg reaction-diffusion systems, SIAM J. Appl. Dyn. Syst., 13, 1, 94-128, (2014) · Zbl 1297.65162
[103] Uecker, H.; Wetzel, D.; Rademacher, J. D.M., Pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems, Num. Math.: Th. Meth. Appl., 7, 58-106, (2014) · Zbl 1313.65311
[104] G. van Rossum, Python Tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI). 1995,
[105] Wang, Z. Q.; Zhou, J., A local minimax-Newton method for finding multiple saddle points with symmetries, SIAM J. Numer. Anal., 42, 4, 1745-1759, (2004) · Zbl 1087.65565
[106] Wong, J. S., On the generalized Emden-Fowler equation, SIAM Rev., 17, 2, 339-360, (1975) · Zbl 0295.34026
[107] Xie, Z.; Yuan, Y.; Zhou, J., On finding multiple solutions to a singularly perturbed Neumann problem, SIAM J. Sci. Comput., 34, 1, A395-A420, (2012) · Zbl 1238.58008
[108] Zhou, J., A minimax-Newton method for solving semilinear elliptic PDE for multiple solutions, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.