×

zbMATH — the first resource for mathematics

A new parallel Intel Xeon Phi hydrodynamics code for massively parallel supercomputers. (English) Zbl 1409.76005
Summary: In this paper, a new hydrodynamics code called gooPhi to simulate astrophysical flows on modern Intel Xeon Phi processors with KNL architecture is presented. A new vector numerical method implemented in the form of a program code for massively parallel architectures is proposed. A detailed description is given and a parallel implementation of the code is made. A performance of 173 gigaflops and 48 speedup are obtained on a single Intel Xeon Phi processor. A 97 per cent scalability is reached with 16 processors.

MSC:
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
65Y10 Numerical algorithms for specific classes of architectures
76W05 Magnetohydrodynamics and electrohydrodynamics
85-08 Computational methods for problems pertaining to astronomy and astrophysics
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kulikov, I. M.; Chernykh, I. G.; Snytnikov, A. V.; Glinskiy, B. M.; Tutukov, A. V., AstroPhi: a code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers, Comput. Phys. Commun., 186, 71-80, (2015)
[2] Kulikov, I.; Chernykh, I.; Tutukov, A., A new hydrodynamic model for numerical simulation of interacting galaxies on Intel Xeon Phi supercomputers, J. Phys.: Conf. Ser, 719, 012006, (2016)
[3] Glinsky, B.; Kulikov, I.; Chernykh, I.; etal., The Co-design of Astrophysical Code for Massively Parallel Supercomputers, Lect. NotesComput. Sci., 10049, 342-353, (2017)
[4] Kulikov, I. M.; Chernykh, I. G.; Glinskiy, B. M.; Protasov, V. A., An efficient optimization of HLL method for the second generation of Intel Xeon Phi processor, Lobachevskii J. Math., 39, 543-551, (2018) · Zbl 1442.85001
[5] Pearcea, F. R.; Couchman, H. M. P., Hydra: a parallel adaptive grid code, New Astron., 2, 411-427, (1997)
[6] Wadsley, J. W.; Stadel, J.; Quinn, T., Gasoline: a flexible, parallel implementation of TreeSPH, New Astron., 9, 137-158, (2004)
[7] Matthias, S., GRAPESPH: cosmological smoothed particle hydrodynamics simulations with the specialpurpose hardware GRAPE, Mon. Not. R. Astron. Soc., 278, 1005-1017, (1996)
[8] Springel, V., The cosmological simulation codeGADGET-2, Not. R. Astron. Soc., 364, 1105-1134, (2005)
[9] Ziegler, U., Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code, Astron. Astrophys., 435, 385-395, (2005)
[10] Mignone, A.; Plewa, T.; Bodo, G., The piecewise parabolic method for multidimensional relativistic fluid dynamics, Astrophys. J., 160, 199-219, (2005)
[11] Hayes, J.; Norman, M.; Fiedler, R.; etal., Simulating radiating and magnetized flows in multiple dimensions with ZEUS-MP, Astrophys. J. Suppl. Ser., 165, 188-228, (2006)
[12] O’Shea, B.; Bryan, G.; Bordner, J.; etal., Introducing Enzo, an AMR cosmology application, Lect. Notes Comput. Sci. Eng., 41, 341-349, (2005) · Zbl 1065.83066
[13] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astron. Astrophys., 385, 337-364, (2002)
[14] Kravtsov, A.; Klypin, A.; Hoffman, Y., Constrained simulations of the real Universe. II. Observational signatures of intergalactic gas in the local supercluster region, Astrophys. J., 571, 563-575, (2002)
[15] Stone, J.; Gardiner, T.; Teuben, P.; etal., Athena: a new code for astrophysical MHD, Astrophys. J. Suppl. Ser., 178, 137-177, (2008)
[16] Brandenburg, A.; Dobler, W., Hydromagnetic turbulence in computer simulations, Comput. Phys. Commun., 147, 471-475, (2002) · Zbl 1016.85002
[17] Gonzalez, M.; Audit, E.; Huynh, P., HERACLES: a three-dimensional radiation hydrodynamics code, Astron. Astrophys., 464, 429-435, (2007)
[18] Krumholz, M. R.; Klein, R. I.; McKee, C. F.; etal., Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics, Astrophys. J., 667, 626-643, (2007)
[19] Mignone, A.; Bodo, G.; Massaglia, S.; etal., PLUTO: a numerical code for computational astrophysics, Astrophys. J. Suppl. Ser., 170, 228-242, (2007)
[20] Almgren, A.; Beckner, V.; Bell, J.; etal., CASTRO: a new compressible astrophysical solver. I. Hydrodynamics and self-gravity, Astrophys. J., 715, 1221-1238, (2010)
[21] Schive, H.; Tsai, Y.; Chiueh, T., GAMER: a GPU-accelerated adaptive-mesh-refinement code for astrophysics, Astrophys. J., 186, 457-484, (2010)
[22] Murphy, J.; Burrows, A., BETHE-hydro: an arbitrary Lagrangian-Eulerian multidimensional hydrodynamics code for astrophysical simulations, Astrophys. J. Suppl. Ser., 179, 209-241, (2008)
[23] Springel, V., E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh, Mon. Not. R. Astron. Soc., 401, 791-851, (2010)
[24] Bruenn, S.; Mezzacappa, A.; Hix, W.; etal., 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code, J. Phys, 180, 012018, (2009)
[25] Hopkins, P., A new class of accurate, mesh-free hydrodynamic simulation methods, Mon. Not. R. Astron. Soc., 450, 53-110, (2015)
[26] Glinskiy, B.; Kulikov, I.; Snytnikov, A.; Romanenko, A.; Chernykh, I.; Vshivkov, V., Co-design of parallel numerical methods for plasma physics and astrophysics, Supercomput. Front. Innov., 1, 88-98, (2014)
[27] Rusanov, V. V., The calculation of the interaction of non-stationary shock waves with barriers, Comput. Math. Math. Phys., 1, 304-320, (1962)
[28] Vshivkov, V.; Lazareva, G.; Snytnikov, A.; Kulikov, I.; Tutukov, A., Computational methods for illposed problems of gravitational gasodynamics, J. Inverse Ill-Posed Probl., 19, 151-166, (2011) · Zbl 1279.65011
[29] Godunov, S.; Kulikov, I., Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee, Comput. Math. Math. Phys., 54, 1012-1024, (2014) · Zbl 1313.35238
[30] Frigo, M.; Johnson, S., The design and implementation of FFTW3, Proc. IEEE, 93, 216-231, (2005)
[31] Kalinkin, A.; Laevsky, Y.; Gololobov, S., 2D fast Poisson solver for high-performance computing, Lect. Notes Comput. Sci., 5698, 112-120, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.