zbMATH — the first resource for mathematics

High performance computing in multiscale problems of gas dynamics. (English) Zbl 1409.76006
Summary: The work is devoted to the organization of high performance computing in the solution of multiscale problems of gas dynamics relevant for the implementation of modern nanotechnologies. The base of the presented computing technology is a multiscale two-level approach that combines calculations at macro- and microlevels. The approach makes it possible to study micro- and nanoflows of a gaseous medium under conditions of complex geometry of technical systems used in the production cycle in order to obtain new nanomaterials and nanocoatings. Within the framework of the approach a system of the quasigasdynamic (QGD) equations and a system of the molecular dynamics (MD) equations are considered as two basic mathematical models. These models are aggregated using the method of splitting by physical processes and scales. The QGD system is solved by the finite volume method on grids of arbitrary type. The MD equations are solved according to the Verlet integration. In view of the complexity of the problem a high performance computing is used for realization of the approach. Parallel implementation of the approach is based on the methods of domain decomposition and functional parallelism and is oriented towards the use of computer systems with hybrid architecture. The implementation uses MPI, OpenMP and CUDA technologies. Testing of the developed approach and parallel tool was performed using the example of the problem of spraying the nanoparticles on a substrate. Numerical experiments confirm the effectiveness of the developed computing technology.
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
65Y10 Numerical algorithms for specific classes of architectures
68W10 Parallel algorithms in computer science
76N15 Gas dynamics (general theory)
PDF BibTeX Cite
Full Text: DOI
[1] J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954). · Zbl 0057.23402
[2] Lennard-Jones, J. E., Cohesion, Proc. Phys. Soc., 43, 461-482, (1931) · Zbl 0002.37202
[3] Verlet, L., Computer’ experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 98-103, (1967)
[4] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods (Wiley, New York, 1992).
[5] D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algorithm to Applications (Academic, New York, 2002). · Zbl 0889.65132
[6] D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 2004). · Zbl 1098.81009
[7] Norman, G. E.; Stegailov, V. V., Stochastic theory of the classical molecular dynamics method, Math. Models Comput. Simul., 5, 305-333, (2013) · Zbl 1289.81021
[8] Podryga, V. O., Multiscale approach to computation of three-dimensional gas mixture flows in engineering microchannels, Dokl. Math., 94, 458-460, (2016) · Zbl 1349.76874
[9] Podryga, V. O.; Polyakov, S. V., Parallel implementation of multiscale approach to the numerical study of gas microflows, Vychisl. Metody Programm., 17, 147-165, (2016)
[10] T. G. Elizarova, Quasi-Gas Dynamic Equations (Springer, Berlin, Heidelberg, 2009). · Zbl 1169.76001
[11] Yu. V. Sheretov, Dynamics of ContinuousMedia with Space-Time Averaging (Regular. Khaot. Dinamika, Izhevsk, 2009) [in Russian].
[12] Elizarova, T. G.; Zlotnik, A. A.; Chetverushkin, B. N., On quasi-gasdynamic and quasi-hydrodynamic equations for binary mixtures of gases, Dokl. Math., 90, 1-5, (2014) · Zbl 1315.76028
[13] L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1976) [in Russian].
[14] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: FluidMechanics (Nauka,Moscow, 1986; Pergamon, London, 1959).
[15] L. G. Loitsyansky, Mechanics of Liquid and Gas (Nauka, Moscow, 1987) [in Russian].
[16] M. N. Kogan, Rarefied Gas Dynamics (Plenum, New York, 1969).
[17] E. M. Shakhov, Method for Investigation of Rarefied GasMotion (Nauka, Moscow, 1974) [in Russian].
[18] Yu. A. Koshmarov and Yu. A. Ryzhov, AppliedDynamics of Rarefied Gas (Mashinostroenie,Moscow, 1977) [in Russian].
[19] C. Cercignani, Theory and Application of the Boltzmann Equation (Springer, New York, 1988). · Zbl 0646.76001
[20] G. Bird, Molecular Gas Dynamics (Mir,Moscow, 1981; Clarendon, Oxford, 1994).
[21] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation ofGas Flows (Clarendon, Oxford, 1994).
[22] V. V. Vedenyapin, Boltzmann and Vlasov Kinetic Equations (Fizmatlit, Moscow, 2001) [in Russian].
[23] F. M. Sharipov and V. D. Seleznev, Flows of Rarefied Gases in Channels and Microchannels (Inst. Teplofiz. RAN, Ekaterinburg, 2008) [in Russian].
[24] Roy, Ch. J.; Gallis, M. A.; Bartel, T. J.; Jeffrey, L. P., Navier-Stokes and direct simulation Monte Carlo predictions for laminar hypersonic separation, AIAA J., 41, 1055-1063, (2003)
[25] Zakharov, V. V.; Rodionov, A. V.; Lukyanov, G. A.; Crifo, J. F., Navier-Stokes and direct Monte Carlo simulations of the circumnuclear gas coma: III. Spherical, inhomogeneous sources, Icarus, 194, 327-346, (2008)
[26] Li, Zh.-H.; Li, Zh.-H.; Wu, J.-L.; Peng, A.-P., Coupled Navier-Stokes/direct simulation Monte Carlo simulation of multicomponent mixture plume flows, J. Propuls. Power, 30, 672-689, (2014)
[27] Geiser, J., Splitting approach to coupled Navier-Stokes and molecular dynamics equations, J. Comput. Modell., 2, 1-33, (2012)
[28] Isfahani, A. H. M.; Tasdighi, I.; Karimipour, A.; Shirani, E.; Afrand, M., A joint lattice Boltzmann and molecular dynamics investigation for thermohydraulical simulation of nano flows through porous media, Eur. J. Mech. B: Fluids, 55, 15-23, (2016) · Zbl 1408.76505
[29] Eymard, R.; Gallouet, T. R.; Herbin, R.; Ciarlet, P. G. (ed.); Lions, J. L. (ed.), The finite volume method, 713-1020, (2000)
[30] R. Li, Zh. Chen, and W. Wu, Generalized Difference Methods for Differential Equations. Numerical Analysis of Finite Volume Methods (Marcel Dekker, New York, 2000). · Zbl 0940.65125
[31] I. V. Popov and I. V. Friazinov, Method of Adaptive Artificial Viscosity of the Numerical Solution of the Gas Dynamics Equations (KRASAND,Moscow, 2015) [in Russian].
[32] W. Gautschi, Numerical Analysis, 2nd ed. (Springer, Birkhauser, New York, 2012). · Zbl 1378.65002
[33] Podryga, V. O., Molecular dynamics method for simulation of thermodynamic equilibrium, Math. Models Comput. Simul., 3, 381-388, (2011) · Zbl 1265.80005
[34] Podryga, V. O.; Polyakov, S. V.; Puzyrkov, D. V., Supercomputer molecular modeling of thermodynamic equilibrium in gas-metal microsystems, Vychisl. Metody Programm., 16, 123-138, (2015)
[35] Kudryashova, T. A.; Podryga, V. O.; Polyakov, S. V., Simulation of gas mixture flows in microchannels, Vestn. RUDN, Ser.: Mat. Inform. Fiz., 3, 154-163, (2014)
[36] Karamzin, Yu. N.; Kudryashova, T. A.; Podryga, V. O.; Polyakov, S. V., Multiscale simulation of nonlinear processes in technical microsystems, Mat. Model., 27, 65-74, (2015) · Zbl 1349.76770
[37] Podryga, V. O.; Polyakov, S. V., Multiscale modeling of gas jet outflow to vacuum, (2016)
[38] Kornilina, M. A.; Podryga, V. O.; Polyakov, S. V.; Puzyrkov, D. V.; Yakoboskiy, M. V., Cloud service for solution of promising problems of nanotechnology, Supercomput. Front. Innov., 4, 66-79, (2017)
[39] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19, (1995) · Zbl 0830.65120
[40] Phillips, J. C.; etal., Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781-1802, (2005)
[41] Aktulga, H. M.; Fogarty, J. C.; Pandit, S. A.; Grama, A. Y., Parallel reactive molecular dynamics: numerical methods and algorithmic techniques, (2009)
[42] Bisson, M.; Bernaschi, M.; Melchionna, S., Parallel molecular dynamics with irregular domain decomposition, Commun. Comput. Phys., 10, 1071-1088, (2011) · Zbl 1373.82073
[43] Brown, W. M.; etal., Implementing molecular dynamics on hybrid high performance computers-short range forces, Comput. Phys. Commun., 182, 898-911, (2011) · Zbl 1221.82008
[44] Morozov, I. V.; Kazennov, A. M.; Bystryi, R. G.; Norman, G. E.; Pisarev, V. V.; Stegailov, V. V., Molecular dynamics simulations of the relaxation processes in the condensed matter on GPUs, Comput. Phys. Commun., 182, 1974-1978, (2011)
[45] Pennycook, S. J.; etal., Exploring SIMD for molecular dynamics, using Intel Xeon processors and Intel Xeon Phi coprocessors, 1085-1097, (2013), Boston, MA, May 20-24
[46] Brown, W. M.; Yamada, M., Implementing molecular dynamics on hybrid high performance computersthree-body potentials, Comput. Phys. Commun., 184, 2785-2793, (2013)
[47] Begau, C.; Sutmann, G., Adaptive dynamic load-balancing with irregular domain decomposition for particle simulations, Comput. Phys. Commun., 190, 51-61, (2015)
[48] Smirnov, G. S.; Stegailov, V. V., Efficiency of classical molecular dynamics algorithms on supercomputers, Math. Models Comput. Simul., 8, 734-743, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.