zbMATH — the first resource for mathematics

Numerical simulation of bubble coalescence and break-up in multinozzle jet ejector. (English) Zbl 1435.76084
Summary: Designing the jet ejector optimally is a challenging task and has a great impact on industrial applications. Three different sets of nozzles (namely, 1, 3, and 5) inside the jet ejector are compared in this study by using numerical simulations. More precisely, dynamics of bubble coalescence and breakup in the multinozzle jet ejectors are studied by means of Computational Fluid Dynamics (CFD). The population balance approach is used for the gas phase such that different bubble size groups are included in CFD and the number densities of each of them are predicted in CFD simulations. Here, commercial CFD software ANSYS Fluent 14.0 is used. The realizable \(k-\varepsilon\) turbulence model is used in CFD code in three-dimensional computational domains. It is clear that Reynolds-Averaged Navier-Stokes (RANS) models have their limitations, but on the other hand, turbulence modeling is not the key issue in this study and we can assume that the RANS models can predict turbulence of the carrying phase accurately enough. In order to validate our numerical predictions, results of one, three, and five nozzles are compared to laboratory experiments data for Cl\(_2\)-NaOH system. Predicted gas volume fractions, bubble size distributions, and resulting number densities of the different bubble size groups as well as the interfacial area concentrations are in good agreement with experimental results.
76T10 Liquid-gas two-phase flows, bubbly flows
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
Full Text: DOI
[1] Ekambara, K.; Sean Sanders, R.; Nandakumar, K.; Masliyah, J. H., CFD modeling of gas-liquid bubbly flow in horizontal pipes: influence of bubble coalescence and breakup, International Journal of Chemical Engineering, 2012, (2012)
[2] Olmos, E.; Gentric, C.; Vial, C.; Wild, G.; Midoux, N., Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break-up, Chemical Engineering Science, 56, 21-22, 6359-6365, (2001)
[3] Mouza, K. A.; Kazakis, N. A.; Paras, S. V., Bubble column reactor design using a CFD code, Proceedings of the 1st International Conference “From Scientific Computing to Computational Engineering” (IC-SCCE ’04)
[4] Joshi, J. B.; Vitankar, V. S.; Kulkarni, A. A.; Dhotre, M. T.; Ekambara, K., Coherent flow structures in bubble column reactors, Chemical Engineering Science, 57, 16, 3157-3183, (2002)
[5] Kocamustafaogullari, G.; Huang, W. D., Internal structure and interfacial velocity development for bubbly two-phase flow, Nuclear Engineering and Design, 151, 1, 79-101, (1994)
[6] Kitagawa, A.; Sugiyama, K.; Murai, Y., Experimental detection of bubble-bubble interactions in a wall-sliding bubble swarm, International Journal of Multiphase Flow, 30, 10, 1213-1234, (2004) · Zbl 1136.76549
[7] Wild, G.; Poncin, S.; Li, H.; Olmos, E., Some aspects of the hydrodynamics of bubble columns, International Journal of Chemical Reactor Engineering, 1, 1, 1-36, (2003)
[8] Deckwer, W.-D., Bubble Column Reactors, (1992), Chichester, UK: John Wiley & Sons, Chichester, UK
[9] Spicka, P.; Dias, M. M.; Lopes, J. C. B., Gas-liquid flow in a 2D column: comparison between experimental data and CFD modelling, Chemical Engineering Science, 56, 21-22, 6367-6383, (2001)
[10] Cao, J.; Christensen, R. N., Analysis of moving boundary problem for bubble collapse in binary solutions, Numerical Heat Transfer, Part A: Applications, 38, 7, 681-699, (2000)
[11] Cavalcanti, R. D. S.; De Farias Neto, S. R.; Vilar, E. O., A computational fluid dynamics study of hydrogen bubbles in an electrochemical reactor, Brazilian Archives of Biology and Technology, 48, 219-229, (2005)
[12] Krishna, R.; Van Baten, J. M., Scaling up bubble column reactors with the aid of CFD, Chemical Engineering Research and Design, 79, 3, 283-309, (2001)
[13] Van Baten, J. M.; Krishna, R., Scale up studies on partitioned bubble column reactors with the aid of CFD simulations, Catalysis Today, 79-80, 219-227, (2003)
[14] Shimizu, K.; Takada, S.; Minekawa, K.; Kawase, Y., Phenomenological model for bubble column reactors: prediction of gas hold-ups and volumetric mass transfer coefficients, Chemical Engineering Journal, 78, 1, 21-28, (2000)
[15] Buwa, V. V.; Ranade, V. V., Dynamics of gas-liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations, Chemical Engineering Science, 57, 22-23, 4715-4736, (2002)
[16] Lo, S., Application of population balance to CFD modelling of gas-liquid reactors, Proceedings of the Conference on Trends in Numerical and Physical Modelling for Industrial Multiphase Flows
[17] Dhotre, M. T.; Ekambara, K.; Joshi, J. B., CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors, Experimental Thermal and Fluid Science, 28, 5, 407-421, (2004)
[18] Delhaye, J.-M.; McLaughlin, J. B., Appendix 4: report of study group on microphysics, International Journal of Multiphase Flow, 29, 7, 1101-1116, (2003) · Zbl 1136.76492
[19] Prince, M. J.; Blanch, H. W., Bubble coalescence and break-up in air-sparged bubble columns, AIChE Journal, 36, 10, 1485-1499, (1990)
[20] Tu, J. Y.; Yeoh, G. H.; Park, G.-C.; Kim, M.-O., On population balance approach for subcooled boiling flow prediction, Journal of Heat Transfer, 127, 3, 253-264, (2005)
[21] Wang, T.; Wang, J.; Jin, Y., A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow, Chemical Engineering Science, 58, 20, 4629-4637, (2003)
[22] Wang, T.; Wang, J.; Jin, Y., A CFD-PBM coupled model for gas-liquid flows, AIChE Journal, 52, 1, 125-140, (2006)
[23] Hämäläinen, J.; Lindström, S. B.; Hämäläinen, T.; Niskanen, H., Papermaking fibre-suspension flow simulations at multiple scales, Journal of Engineering Mathematics, 71, 1, 55-79, (2011) · Zbl 1254.76156
[24] Hämäläinen, T., Modelling of fibre orientation and fibre flocculation phenomena in paper sheet forming [Ph.D. thesis], (2008), Tampere, Finland: Tampere University of Technology, Publication 768, Tampere, Finland
[25] Lehr, F.; Millies, M.; Mewes, D., Bubble-size distributions and flow fields in bubble columns, AIChE Journal, 48, 11, 2426-2443, (2002)
[26] Campos, F. B.; Lage, P. L. C., A numerical method for solving the transient multidimensional population balance equation using an Euler-Lagrange formulation, Chemical Engineering Science, 58, 12, 2725-2744, (2003)
[27] Chen, P.; Sanyal, J.; Dudukovic, M. P., CFD modeling of bubble columns flows: iamplementation of population balance, Chemical Engineering Science, 59, 22-23, 5201-5207, (2004)
[28] Luo, H.; Svendsen, H. F., Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE Journal, 42, 5, 1225-1233, (1996)
[29] Yeoh, G. H.; Tu, J. Y., Population balance modelling for bubbly flows with heat and mass transfer, Chemical Engineering Science, 59, 15, 3125-3139, (2004)
[30] Atay, I., Fluid flow and gas absorption, in an ejector venturiscrubber [Dissertation for the Degree of Doctor of Engineering Science], (1986), Newark, NJ, USA: New Jersey Institute of Technology, Newark, NJ, USA
[31] Agrawal, K. S., Modeling of multi nozzle jet ejector for absorption with chemical reaction [Doctor of Philosophy Thesis in Chemical Engineering], (2012), Vadodara, India: Maharaja Sayajirao University of Baroda, Vadodara, India
[32] Agrawal, K. S., Jet ejector and its importance in context of Indian industry, International Journal of Applied Environmental Sciences, 8, 3, 267-269, (2013)
[33] Laurent, A.; Charpentier, J. C., Aires interfaciales et coefficients de transfert de matière dans les divers types d’absorbeurs et de réacteurs gaz-liquide, The Chemical Engineering Journal, 8, 2, 85-101, (1974)
[34] Zlokarnik, M., Eignung und leistungsfähigkeit von belüftungsvorrichtungen für die biologische abwasserreinigung, Chemie Ingenieur Technik, 52, 4, 330-331, (1980)
[35] Ogawa, S.; Yamaguchi, H.; Tone, S.; Otake, T., Gas-liquid mass transfer in the jet reactor with liquid jet reactor, Journal of Chemical Engineering of Japan, 16, 5, 419-425, (1983)
[36] Charpentier, J. C., What’s new in absorption with chemical reaction?, Transactions of the Institution of Chemical Engineers, 60, 131-156, (1982)
[37] Costa, M. A. M.; Ribeiro, A. P. R. A.; Tognetti, É. R.; Aguiar, M. L.; Gonçalves, J. A. S.; Coury, J. R., Performance of a Venturi scrubber in the removal of fine powder from a confined gas stream, Materials Research, 8, 2, 177-179, (2005)
[38] Majid, A.; Qi, Y. C.; Mehboob, K., A review of performance of a venturi scrubber, Research Journal of Applied Sciences, Engineering and Technology, 4, 19, 3811-3818, (2012)
[39] Utomo, T.; Jin, Z.; Rahman, M.; Jeong, H.; Chung, H., Investigation on hydrodynamics and mass transfer characteristics of a gas-liquid ejector using three-dimensional CFD modeling, Journal of Mechanical Science and Technology, 22, 9, 1821-1829, (2008)
[40] Das, S. K.; Biswas, M. N., Studies on ejector-venturi fume scrubber, Chemical Engineering Journal, 119, 2-3, 153-160, (2006)
[41] Li, D., Investigation of an ejector-expansion device in a transcritical carbon dioxide cycle for military ECU applications [Ph.D. thesis], (2006), West Lafayette, Ind, USA: Purdue University, West Lafayette, Ind, USA
[42] Witte, J. H., Mixing shocks in two-phase flow, Journal of Fluid Mechanics, 36, 4, 639-655, (1969) · Zbl 0181.54404
[43] Yadav, R. L.; Patwardhan, A. W., Design aspects of ejectors: effects of suction chamber geometry, Chemical Engineering Science, 63, 15, 3886-3897, (2008)
[44] Blenke, H.; Bohner, K.; Vollmerhaus, E., Untersuchungen zur berechnung des betriebsverhaltens von treibstrahlförderern, Chemie Ingenieur Technik, 35, 3, 201-208, (1963)
[45] Bonnington, S. T., Water jet ejectors, BHRA Publication, RR540, (1956)
[46] Bonnington, S. T., Water driven air ejectors, SP664, (1960), BHRA Publication
[47] Bonnington, S. T., A guide to jet pump design, British Chemical Engineering, 9, 3, 150-154, (1964)
[48] Bonnington, S. T.; King, A. L., Jet Pumps and Ejectors: A State of the Art Review and Bibliography, (1972), Bedford, UK: BHRA Fluid Engineering, Bedford, UK
[49] Cunningham, R. G., Gas compression with the liquid jet pump, Journal of Fluids Engineering, 96, 3, 203-215, (1974)
[50] Cunningham, R. G.; Dopkin, R. J., Jet breakup and mixing throat lengths for the liquid jet gas pump, Transactions of the ASME, Journal of Fluids Engineering, 96, 3, 216-226, (1974)
[51] Gamisans, X.; Sarrà, M.; Lafuente, F. J., The role of the liquid film on the mass transfer in venturi-based scrubbers, Chemical Engineering Research and Design, 82, 3, 372-380, (2004)
[52] Govatos, G. C., The slurry pump, Journal of Pipelines, 1, 145-157, (1981)
[53] Kroll, A. E., The design of jet pump, Chemical Engineering Progress, 43, 2, 21-24, (1947)
[54] Acharjee, D. K.; Bhat, P. A.; Mitra, A. K.; Roy, N. A., Studies on momentum transfer in vertical liquid jet ejectors, Indian Journal of Technology, 13, 205-210, (1975)
[55] Bhat, P. A.; Mitra, A. K.; Roy, A. N., Momentum transfer in a horizontal liquid-jet ejector, The Canadian Journal of Chemical Engineering, 50, 3, 313-317, (1972)
[56] Biswas, M. N.; Mitra, A. K.; Roy, A. N., Effective interfacial area in a liquid-jet induced horizontal gas-liquid pipeline contactor, Indian Chemical Engineer, 19, 2, 15-21, (1977)
[57] Biswas, M. N.; Mitra, A. K.; Roy, A. N., Studies on gas dispersion in a horizontal liquid jet ejector, Proceedings of the 2nd Symposium on Jet Pumps and Ejectors and Gas Lift Techniques, BHRA
[58] Davis, W. J., The effect of the Froude number in estimating vertical 2-phase gas-liquid friction losses, British Chemical Engineering, 8, 462-465, (1963)
[59] Davles, G. S.; Mitra, A. K.; Roy, A. N., Momentum transfer studies in ejectors. Correlalations for single-phase and two-phase systems, Industrial & Engineering Chemistry Process Design and Development, 6, 3, 293-299, (1967)
[60] Gamisans, X.; Sarrà, M.; Lafuente, F. J., Gas pollutants removal in a single- and two-stage ejector-venturi scrubber, Journal of Hazardous Materials, 90, 3, 251-266, (2002)
[61] Dasappa, S.; Paul, P. J.; Mukunda, H. J., Fluid dynamic studies on ejectors for thermal applications of gasifiers, Proceedings of the 4th National Meet on Recent Advances in Biomass Gasification Technology
[62] Mitra, A. K.; Roy, A. N., Studies on the performance of ejector: correlation for air-air system, Indian Journal of Technology, 2, 9, 315-316, (1964)
[63] Mitra, A. K.; Guha, D. K.; Roy, A. N., Studies on the performance of ejector Part-I, air-air system, Indian Chemical Engineering Transactions, 5, article 59, (1963)
[64] Mukherjee, D.; Biswas, M. N.; Mitra, A. K., Holdup Studies in Liquid; Liquid Ejector System, 1, (1981), Institute of Chemical Engineers
[65] Mukherjee, D.; Biswas, M. N.; Mitra, A. K., Hydrodynamics of liquid-liquid dispersion in ejectors and vertical two phase flow, Canadian Journal of Chemical Engineering, 66, 6, 896-907, (1988)
[66] Radhakrishnan, V. R.; Mitra, A. K., Pressure drop, holdup and interfacial area in vertical two-phase flow of multi-jet ejector induced dispersions, Canadian Journal of Chemical Engineering, 62, 2, 170-178, (1984)
[67] Pal, S. S.; Mitra, A. K.; Roy, A. N., Pressure drop and holdup in a vertical two-phase counter current flow with improved gas mixing liquid, Industrial & Engineering Chemistry Process Design and Development, 19, 1, 67-75, (1979)
[68] Singh, K. P.; Purohit, N. K.; Mitra, A. K., Performance characteristics of a horizontal ejector: water-water system, Indian Chemical Engineer, 16, 3, 1-6, (1974)
[69] Agrawal, K. S., Performance of venturi scrubber, International Journal of Engineering Research and Development, 7, 11, 53-69, (2013)
[70] Agrawal, K. S., Interfacial area and mass transfer characteristics in multi nozzle jet ejector, International Journal of Emerging Technologies in Computational and Applied Sciences, 3, 5, 270-280, (2013)
[71] Agrawal, S. K., Bubble dynamics and interface phenomenon, Journal of Engineering and Technology Research, 5, 3, 42-50, (2013)
[72] Balamurugan, S.; Lad, M. D.; Gaikar, V. G.; Patwardhan, A. W., Effect of geometry on mass transfer characteristics of ejectors, Industrial and Engineering Chemistry Research, 46, 25, 8505-8517, (2007)
[73] Balamurugan, S.; Gaikar, V. G.; Patwardhan, A. W., Effect of ejector configuration on hydrodynamic characteristics of gas-liquid ejectors, Chemical Engineering Science, 63, 3, 721-731, (2008)
[74] Dutta, N. N.; Raghavan, K. V., Mass transfer and hydrodynamic characteristics of loop reactors with downflow liquid jet ejector, The Chemical Engineering Journal, 36, 2, 111-121, (1987)
[75] Havelka, P.; Linek, V.; Sinkule, J.; Zahradník, J.; Fialová, M., Hydrodynamic and mass transfer characteristics of ejector loop reactors, Chemical Engineering Science, 55, 3, 535-549, (2000)
[76] Havelka, P.; Linek, V.; Sinkule, J.; Zahradnik, J.; Fialova, M., Effect of the ejector configuration on the gas suction rate and gas hold-up in ejector loop reactors, Chemical Engineering Science, 52, 11, 1701-1713, (1997)
[77] Li, C.; Li, Y. Z., Investigation of entrainment behavior and characteristics of gas-liquid ejectors based on CFD simulation, Chemical Engineering Science, 66, 3, 405-416, (2011)
[78] Mandal, A., Characterization of gas-liquid parameters in a down-flow jet loop bubble column, Brazilian Journal of Chemical Engineering, 27, 2, 253-264, (2010)
[79] Mandal, A.; Kundu, G.; Mukherjee, D., Gas-holdup distribution and energy dissipation in an ejector-induced downflow bubble column: the case of non-Newtonian liquid, Chemical Engineering Science, 59, 13, 2705-2713, (2004)
[80] Mandal, A.; Kundu, G.; Mukherjee, D., Interfacial area and liquid-side volumetric mass transfer coefficient in a downflow bubble column, Canadian Journal of Chemical Engineering, 81, 2, 212-219, (2003)
[81] Mandal, A.; Kundu, G.; Mukherjee, D., Gas holdup and entrainment characteristics in a modified downflow bubble column with Newtonian and non-Newtonian liquid, Chemical Engineering and Processing: Process Intensification, 42, 10, 777-787, (2003)
[82] Mandal, A.; Kundu, G.; Mukherjee, D., A comparative study of gas holdup, bubble size distribution and interfacial area in a downflow bubble column, Chemical Engineering Research and Design, 83, 4, 423-428, (2005)
[83] Mandal, A.; Kundu, G.; Mukherjee, D., Energy analysis and air entrainment in an ejector induced downflow bubble column with non-Newtonian motive fluid, Chemical Engineering & Technology, 28, 2, 210-218, (2005)
[84] Mitchell, D. A., Improving the efficiency of free-jet scrubbers, Environment International, 6, 1–6, 21-24, (1981)
[85] Rahman, F.; Umesh, D. B.; Subbarao, D.; Ramasamy, M., Enhancement of entrainment rates in liquid-gas ejectors, Chemical Engineering and Processing: Process Intensification, 49, 10, 1128-1135, (2010)
[86] Yaici, W.; Laurent, A.; Midoux, N.; Charpentier, J.-C., Determination of gas-side mass transfer coefficients in trickle-bed reactors in the presence of an aqueous or an organic liquid phase, International Chemical Engineering, 28, 2, 299-305, (1988)
[87] Yamagiwa, K.; Kusabiraki, D.; Ohkawa, A., Gas holdup and gas entrainment rate in downflow bubble column with gas entrainment by a liquid jet operating at high liquid throughput, Journal of Chemical Engineering of Japan, 23, 3, 343-348, (1990)
[88] Frank, T., Advances in computational fluid dynamics (CFD) of 3-dimensional gas-liquid multiphase flows, Proceedings of the NAFEMS Seminar: Simulation of Complex Flows (CFD)
[89] Kendoush, A. A.; Al-khatab, S. A. W.; Chen, X. Z.; Veziroglu, T. N.; Tien, C. L., Flow regimes characterization in vertical downward two phase flow, Proceedings of the 2nd International Symposium on Multiphase Flow and Heat Transfer
[90] Zahradník, J.; Fialová, M., The effect of bubbling regime on gas and liquid phase mixing in bubble column reactors, Chemical Engineering Science, 51, 10, 2491-2500, (1996)
[91] Rice, R. G.; Littlefield, M. A., Dispersion coefficients for ideal bubbly flow in truly vertical bubble columns, Chemical Engineering Science, 42, 8, 2045-2053, (1987)
[92] Bakshi, B. R.; Jiang, P.; Fan, L. S., Analysis of flow in gas-liquid bubble columns using multi-resolution methods, Proceedings of the 2nd International Conference on Gas-Liquid-Solid Reactor Engineering
[93] Lefebvre, H., Atomization and Sprays, (1989), New York, NY, USA: Hemisphere Publishing Corporation, New York, NY, USA
[94] Liu, H., Science and Engineering of Droplets: Fundamentals and Applications, (2000), New York, NY, USA: Noyes Publications, New York, NY, USA
[95] Schick, R. J., Spray technology reference guide: understanding drop size, Bulletne, 4598, (2006), Wheaton, Ill, USA: Spraying Systems, Wheaton, Ill, USA
[96] Xianguo, L.; Tankin, R. S., Droplet size distribution: a derivative of a Nukiyama—Tanasawa type distribution function, Combustion Science and Technology, 56, 1, 65-76, (1987)
[97] Dennis Gary, A., A study of injector spray characteristics in simulated rocket combustion chamber including longitudinal mode pressure oscillation, 730, (1966), NASA
[98] Azad, M.; Syeda, S. R., A numerical model for bubble size distribution in turbulent gas-liquid dispersion, Journal of Chemical Engineering, 24, 1, 25-34, (2006)
[99] Silva, M. K.; Ávila, M. A. D.; Mori, M., CFD modelling of a bubble column with an external loop in the heterogeneous regime, The Canadian Journal of Chemical Engineering, 89, 4, 671-681, (2011)
[100] Kudzo, A. N., Visualization and characterization of ultrasonic cavitating atomizer and other automotive paint sprayers using infrared thermography [A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy], (2009), Lexington, Ky, USA: College of Engineering, University of Kentucky, Lexington, Ky, USA
[101] Ciborowski, J.; Bin, A., Investigation of the aeration effect of plunging liquid jets, Inzynieria Chemiczna, 2, 557-577, (1972)
[102] Ohkawa, A.; Kusabiraki, D.; Kawai, Y.; Sakai, N.; Endoh, K., Some flow characteristics of a vertical liquid jet system having downcomers, Chemical Engineering Science, 41, 9, 2347-2361, (1986)
[103] Sheng, Y. Y.; Irons, G. A., The impact of bubble dynamics on the flow in plumes of ladle water models, Metallurgical and Materials Transactions B, 26, 3, 625-635, (1995)
[104] Kitscha, J.; Kocamustafaogullari, G., Breakup criteria for fluid particles, International Journal of Multiphase Flow, 15, 4, 573-588, (1989) · Zbl 0673.76109
[105] Bailer, F. O., Mass transfer characteristics of a novel gas-liquid contactor, the advanced buss loop reactor [A Dissertation Submitted to the Swiss Federal Institute of Technology for Degree of Doctor of Technical Sciences], (2001), Zürich, Switzerland: Swiss Federal Institute of Technology, Zürich, Switzerland
[106] Evans, G. M.; Jameson, G. J.; Atkinson, B. W., Prediction of the bubble size generated by a plunging liquid jet bubble column, Chemical Engineering Science, 47, 13-14, 3265-3272, (1992)
[107] Ceylan, K.; Altunbaş, A.; Kelbaliyev, G., A new model for estimation of drag force in the flow of Newtonian fluids around rigid or deformable particles, Powder Technology, 119, 2-3, 250-256, (2001)
[108] Pawelczyk, R.; Pindur, K., A dynamic method for dispersing gases in liquids, Chemical Engineering and Processing: Process Intensification, 38, 2, 95-107, (1999)
[109] Biń, A. K., Gas entrainment by plunging liquid jets, Chemical Engineering Science, 48, 21, 3585-3630, (1993)
[110] Zheng, S.-Q.; Yao, Y.; Guo, F.-F.; Bi, R.-S.; Li, J.-Y., Local bubble size distribution, gas-liquid interfacial areas and gas holdups in an up-flow ejector, Chemical Engineering Science, 65, 18, 5264-5271, (2010)
[111] Agrawal, K. S., Removal efficiency in industrial scale liquid jet ejector for chlorine-aqueous caustic soda system, International Journal of Engineering Trends and Technology, 4, 7, 2931-2940, (2013)
[112] Agrawal, K. S., Experimental observation for liquid jet ejector for chlorine-aqueous caustic soda system at laboratory scale, American International Journal of Research in Science, Technology, Engineering and Mathematics, 2, 2, 177-181, (2013)
[113] Agrawal, K. S., Performance of venturi scrubber, International Journal of Engineering Research and Development, 17, 11, 53-69, (2013)
[114] Panchal, N. A.; Bhutada, S. R.; Pangarkar, V. G., Gas induction and hold up characteristics of liquid jet loop reactor using multi orifice nozzles, Chemical Engineering Communications, 102, 1, 59-68, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.